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Species distribution models (SDMs) are computational tools utilized to predict the geographical range of species
by analyzing occurrence data and environmental conditions. While multiple algorithms are available for
implementing SDMs, studies focusing on pollinators like bumblebees (genus Bombus) in the Himalayas remain
scarce, despite their ecological importance in forest and agroecosystems. We performed this work to identify the
most effective SDM algorithms for modeling the distribution of genus Bombus in the Himalayas, thereby
improving conservation strategies. We compared eight SDM algorithms, including Artificial Neural Network
(ANN), Classification Tree Analysis (CTA), Flexible Discriminant Analysis (FDA), Generalized Additive Model
(GAM), Generalized Boosting Model (GBM), Generalized Linear Model (GLM), Maximum Entropy Model
(MAXENT), and Random Forest (RF), along with an ensemble method. Evaluations were based on metrics such as
the area under the curve (AUC) for receiver operating characteristic (ROC), true skill statistic (TSS), and sta-
tistical properties like skewness and kurtosis. Among single models, RF stood out for its strong ROC, TSS, and
statistical properties. The ensemble approach, however, was overall the best option across these metrics. Re-
searchers are encouraged to select SDM algorithms after careful evaluation of study-specific factors such as
geographic area, sample size, species diversity, and spatial variables. The scientific community should develop
and authenticate optimal standards that integrate biodiversity concepts, ecological traits, environmental factors,
ecosystem-based approaches, and field data to ensure effective model assessment, informed decision-making, and
policy formulation for conserving biodiversity and advancing sustainable development goals in the Himalayas.

1. Introduction Despite variations in algorithms, the underlying principles of SDMs are
similar. First, the area of interest is divided into grid cells at a defined
resolution. Next, species presence (or abundance) data are used as the

dependent variable, while environmental factors such as elevation,

Over the past few decades, ecologists have focused on understanding
the mechanisms that drive biodiversity patterns at different spatial

scales (Dey et al., 2024). Species Distribution Models (SDMs) are such
techniques that integrate environmental variables and occurrence of
species to forecast the distribution of species across landscapes. When
paired with geographic information systems (GIS), SDMs provide spatial
predictions of species presence in areas lacking prior distribution data.

temperature, and precipitation serve as predictor variables. The model
then calculates the suitability of each grid cell for species occurrence
based on these environmental inputs. The final goal of conservation,
which is to protect maximum species and habitats with limited re-
sources, depends on identifying distribution patterns and extinction
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Fig. 1. The flow-chart of the preparation of species distribution models (SDMs) and their evaluation processes.

risks of biodiversity at regional and local scales, a process dependent on
information about the spatial variation of species composition (De et al.,
2023a). Thus, the SDMs allow for a better understanding of species
distributions, even in regions with limited biological data, offering
valuable insights for conservation and land-use planning.

Bumblebees (Hymenoptera: Apidae: Bombini: Bombus) are insect
pollinators adapted to thrive in cold environments due to their ther-
moregulatory abilities, which allow them to remain active even at low
temperatures. This adaptation is particularly crucial in high-altitude
regions, where harsh conditions such as cold temperatures and
reduced oxygen levels limit the activity of other pollinators (Dillon and
Dudley, 2014). Bumblebees play an indispensable role in pollinating
both wild and agricultural plants in these extreme environments, sus-
taining the health of mountain ecosystems and temperate zones. Easily
recognized by their large, fuzzy bodies adorned with black-and-yellow
stripes, bumblebees consist of approximately 265 species worldwide,
with 62 species found in the Himalayas, nine of which are endemic to
the region (Williams, 2022; https://bumblebeespecialistgroup.org/).
However, recent studies have raised alarms about a significant decline in
insect populations, especially among flying insects like bumblebees, in

temperate regions (Eggleton, 2020). In America, Europe and Asia this
decline is driven by several detrimental factors like climate change,
competition with invasive species, attack of pathogen, loss of habitat
and use of pesticides (Cameron and Sadd, 2020). In Asia, they are facing
threats in the highlands of Japan, China, the Tibetan Plateau and the
Himalayas (Nagamitsu, 2023; Singh et al., 2022a; Singh et al., 2024;
Naeem et al., 2024). The loss of bumblebee species threatens to disrupt
crucial pollination services, potentially triggering an extinction vortex
where both pollinators and the plants they support face mutual extinc-
tion (Goulson et al.,, 2008). Furthermore, climate change is forcing
bumblebees to shift their ranges to higher elevations, creating spatial
mismatches between the bees and their plant pollinators (Egawa and
Itino, 2019). The introduction of bumblebees for agricultural pollination
has led some species to become invasive (Lopez-Aguilar et al., 2024).
Monitoring changes in bumblebee distribution and abundance is
essential for effective conservation efforts in mountain regions to miti-
gate these risks.

The SDMs of pollinators are transformative tools for sustainable
development in fragile ecosystems like the Himalayas. The SDMs serve
as essential tools for pollinator conservation, aiding in various
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Table 1

Comparative account of the receiver operating characteristic (ROC) and true
skill statistic (TSS) values of eight species distribution models (SDMs) — Artificial
Neural Network (ANN), Classification Tree Analysis (CTA), Flexible Discrimi-
nant Analysis (FDA), Generalized Additive Model (GAM), Generalized Boosting
Model (GBM), Generalized Linear Model (GLM), Maximum Entropy Model
(MAXENT), Random Forest (RF) and Ensemble model.

Models Evaluation methods Mean SD
ANN TSS 0.507 0.075
ROC 0.804 0.035
CTA TSS 0.568 0.038
ROC 0.827 0.024
FDA TSS 0.512 0.028
ROC 0.83 0.013
GAM TSS 0.563 0.022
ROC 0.842 0.014
GBM TSS 0.589 0.025
ROC 0.864 0.012
GLM TSS 0.388 0.036
ROC 0.745 0.018
MAXENT TSS 0.507 0.034
ROC 0.822 0.021
RF TSS 0.69 0.02
ROC 0.925 0.008
Ensemble TSS 0.71 -
ROC 0.945

sustainable development goals (SDGs). Firstly, they can identify critical
habitats crucial for pollinators’ survival, facilitating targeted conserva-
tion strategies that support terrestrial biodiversity (SDG 15). Secondly,
SDMs forecast regions where pollination services are vulnerable to
habitat degradation or climatic changes, enabling sustainable agricul-
ture and enhancing food security (SDG 2). Thirdly, by examining climate
change impacts on pollinator distributions, SDMs contribute to adaptive
approaches for ecological resilience (SDG 13). Beyond ecological ap-
plications, SDMs can integrate citizen science contributions, encour-
aging community engagement and enhancing knowledge dissemination.
This promotes educational development (SDG 4) and strengthens
collaborative global efforts (SDG 17). By preserving essential services
like pollination, SDMs reinforce sustainable natural resource use and
boost long-term agricultural productivity (SDG 12). In addition, effec-
tive pollinator management contributes to poverty alleviation by
improving agricultural yields and farmer incomes (SDG 1). It also pro-
motes healthier environments by minimizing pesticide reliance and
maintaining natural areas that benefit human well-being (SDG 3).
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Incorporating climate adaptation into pollinator strategies safeguards
ecological services while creating employment opportunities in rural
landscapes (SDG 8). By connecting biodiversity conservation with eco-
nomic and social growth, SDM supports multiple SDGs and promotes
resilience in Himalayan communities.

Recent works on SDMs for various animals and plants, including
bumblebees, have increasingly adopted an ensemble approach, which
combines multiple models rather than relying on a single one. However,
research suggests that single-algorithm models can produce distribution
maps with accuracy comparable to those generated by ensemble
methods (Kaky et al., 2020). This raises questions about the supposed
superiority of ensemble models, indicating that they may not offer a
distinct advantage. The challenge, however, lies in determining which
model is best suited for a particular species and habitat, as no single
algorithm consistently outperforms others. Different algorithms can
produce varying results depending on the species and environmental
conditions studied. Despite the growing use of SDMs in biodiversity
assessments, there are no universally accepted standards or best prac-
tices for building these models or evaluating their effectiveness. Given
the importance of species distribution studies in shaping conservation
policies, especially in the face of global climate changes standardized
process for developing SDMs tailored to specific taxa and regions is
needed to ensure accurate and actionable insights for conservation
efforts.

The Himalayas, with rich biodiversity shaped by diverse landscapes
and microclimatic conditions, provide a unique opportunity for genetic,
evolutionary, and ecological studies, while the recent decline in species
highlights the urgent need to understand the relationship between
ecological factors and biodiversity for effective conservation and man-
agement (Singh et al., 2022b; De and Dwivedi, 2023; Parab et al., 2023).
The Himalayas is the most extensively studied region among all Indian
biogeographical zones for understanding the potential current and
future distribution of species using SDMs. In the Himalayan ecosystem,
bumblebees play a crucial ecological role, yet studies focusing on their
distribution models are sparse and rely mainly on single-algorithm
methods (Singh et al., 2022a; Singh et al., 2024). The present study
aims to determine which algorithm performs better for modeling the
distribution of bumblebees in the Himalayan mountain environment,
providing insights that could lead to more accurate and effective con-
servation strategies for this important species.
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Fig. 2. Comparative account of the receiver operating characteristic (ROC) values of eight species distribution models (SDMs) — Artificial Neural Network (ANN),
Classification Tree Analysis (CTA), Flexible Discriminant Analysis (FDA), Generalized Additive Model (GAM), Generalized Boosting Model (GBM), Generalized Linear

Model (GLM), Maximum Entropy Model (MAXENT), and Random Forest (RF).
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Fig. 3. Comparative account of the true skill statistic (TSS) values of eight species distribution models (SDMs) — Artificial Neural Network (ANN), Classification Tree
Analysis (CTA), Flexible Discriminant Analysis (FDA), Generalized Additive Model (GAM), Generalized Boosting Model (GBM), Generalized Linear Model (GLM),

Maximum Entropy Model (MAXENT), and Random Forest (RF).

2. Study area

For this study we chose the Himalayan and Trans-Himalayan terri-
tories of India, Nepal, and Bhutan, spanning a geographic extent from to
26.395343°N to 37.088362°N and to 97.412895°E to 72.513077°E. The
Himalayas, formed approximately 55 million years ago through the
convergence of the Indian and Eurasian Plates, is a tectonically active
and young mountain system. Known for its complex topography and
ecological richness, this region exhibits significant biodiversity, diverse
landscapes, and distinct climatic conditions. The Himalayan range is
divided into four biogeographic provinces namely North-West Hima-
laya, West Himalaya, Central Himalaya, and Eastern Himalaya (Rodgers
et al., 2000). The Trans-Himalayan region, recognized as a high-altitude
cold desert, is subdivided into the Ladakh Mountains, the Tibetan
Plateau, and the Sikkim Plateau (Rawat et al., 2023). The Ladakh
Mountains include areas such as Kargil, Nubra, and Zanskar in Ladakh
and parts of Himachal Pradesh like Lahaul-Spiti and Kinnaur, while the
Tibetan Plateau encompasses the Changthang region of Ladakh and
northern Uttarakhand. Besides being climatically sensitive, the region
also faces ongoing geological instability, which increases its risk of
earthquakes and other natural disasters.

3. Data

We collected occurrence records of bumblebees through a combi-
nation of fieldwork and literature surveys. We performed fieldwork
between May 2018 and February 2020 in the western Himalaya, spe-
cifically in the Great Himalayan National Park Conservation Area
(GHNPCA), and the Trans-Himalayan regions of Lahaul-Spiti and Leh-
Ladakh. In GHNPCA, we sampled bumblebees from the Parvati, Tir-
than, Sainj, and Jiwa Nala valleys. In Ladakh, we gathered samples from
the Shyok, Nubra, and Indus valleys, while in Lahaul, our sampling sites
were the Bhaga, Chandra, Miyar, and Chenab valleys. At each site, we
made a single visit and recorded species occurrences by direct obser-
vation along roadsides, forest trails, and hilly treks during the day. We
collected specimens using the sweep netting method, with sampling
locations purposefully chosen near streams due to the higher abundance
of flowering plants, which are important for bumblebee foraging. Our
methodology relied on opportunistic sampling, which offers insights
into ecological changes, especially on a large scale (van Strien et al.,
2013). We identified 13 species from the field using identification keys
for Indian bumblebees (Saini et al., 2015), and submitted voucher
specimens to the museum. For further details on the sampling methods,

please refer to Singh et al., 2022 and Singh et al., 2024. Through an
extensive literature survey, we gathered secondary data on bumblebee
occurrences across the Trans-Himalaya and Western Himalaya regions
(Williams, 1991; Williams, 2004; Williams et al., 2010; Saini et al.,
2011; Streinzer et al., 2019). Although these references lacked GPS co-
ordinates for most species, they provided the names of specific localities
and their elevational ranges. Given the narrow foraging range of bum-
blebees (Gomez-Martinez et al., 2020), we used Google Earth Pro to
carefully extract GPS coordinates for each species at each location
(Singh et al., 2024). To standardize the data, we constructed a 1 km? grid
covering the entire study area. As the home range of bumblebees is
typically 250-350 m from the nest (Dramstad, 1996), this grid size
maximized the encounter rate for individual species. We eliminated
duplicate species records within the same grid to ensure data accuracy.
This led us to make occurrence data on a total of 32 species of the genus
Bombus (B. abnormis, B. agrorum, B. asiaticus, B. avinoviellus, B. breviceps,
B. eximius, B. ferganicus, B. festivus, B. flavescens, B. funerarius, B. genalis,
B. grahami, B. haemorrhoidalis, B. hypnorum, B. lapidarius, B. lemniscatus,
B. lepidus, B. lucorum, B. luteipes, B. melanurus, B. miniatus, B. mirus,
B. parthenius, B. pressus, B. pyrosoma, B. rufofasciatus, B. semenovianus,
B. simillimus, B. subtypicus, B. trifasciatus, B. tunicatus and B. waltoni) from
1177 locations.

For analysis we collected bioclimatic layers (WorldClim version 2)
from worldclim gridded climate data (Fick and Hijmans, 2017) (htt
ps://www.worldclim.org/data/index.html), land use land cover
(LULC) data (Buchhorn et al., 2020) from https://land.copernicus.eu
/global/products/lc and human footprint (Venter et al., 2018) from
NASA Socioeconomic Data and Applications Center (SEDAC) (https://
sedac.ciesin.columbia.edu/data/set/wildareas-v3-2009-human-foot
print).

4. Methods

We resampled all the spatial layers to 1 km? resolution by nearest
neighbour method, as this method is appropriate for both continuous
and categorical layers (Johnson and Clarke, 2021). To avoid multi-
collinearity, we tested both the variance inflation factor (VIF), removing
variables with VIF > 10, and Pearson’s correlation coefficient (r),
excluding variables with r > 0.80. For modeling we used LULC, human
footprint and six bioclimatic layers namely Bio 2 (mean diurnal range),
Bio 7 (temperature annual range), Bio 10 (mean temperature of warmest
quarter), Bio 12 (annual precipitation), Bio 15 (precipitation season-
ality), and Bio 19 (precipitation of coldest quarter). We performed all
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Fig. 4. Comparative account of habitat suitability of bumblebees for eight species distribution models (SDMs) — Artificial Neural Network (ANN), Classification Tree
Analysis (CTA), Flexible Discriminant Analysis (FDA), Generalized Additive Model (GAM), Generalized Boosting Model (GBM), Generalized Linear Model (GLM),

Maximum Entropy Model (MAXENT), and Random Forest (RF).

the raster processing work in open source QGIS software version 3.28.11
(https://www.qgis.org/en/site/forusers/download.html), R package
‘usdm’ (Naimi et al., 2013) and ‘raster’ (Hijmans, 2022).

Species within the same genus often occupy distinct environmental
niches, making it preferable to model taxa at the finest possible taxo-
nomic resolution (Benkendorf et al., 2023). However, traditional SDMs
generally assume that species within a genus exist independently, a
scenario rarely observed in natural ecosystems. Genus-level models help
overcome this limitation by incorporating ecological relationships
among species. These models, when combined with co-occurrence data
and environmental factors, improve predictive accuracy, making them a
valuable resource for understanding distributions (Stas et al., 2020).
They can inform conservation strategies by highlighting areas that may
support multiple species within a genus, thus enhancing ecological

resilience (Clarke-Crespo et al., 2020; Moradmand and Yousefi, 2022).
Moreover, genus-level data is typically sufficient in distribution
modeling for assessment of biodiversity as well as conservation planning
(Benkendorf et al., 2023). This approach has been shown to be effective
across various taxa, offering practical insights into species distribution
patterns (Stas et al., 2020; Greenspan et al., 2021; Ross et al., 2021; Fan
et al., 2022; Claerhout et al., 2023; Wan et al., 2023). In this work, we
considered all species of bumblebees under the genus Bombus as a single
taxonomic unit for distribution modeling because all of them are
high-elevation  specialist pollinators having similar habitat
requirements.

A model can yield useful results if it is generated with random
pseudo-absences (PA) for an adequate set of presence locations. To
achieve optimal results in SDMs, it is recommended to run a minimum of
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Fig. 5. Habitat suitability of bumblebees for as per ensemble species distribu-
tion model.

10 iterations for each model using at least 1000 pseudo-absences with
equal prevalence between presences and absences (Barbet-Massin et al.,
2012). For this study we randomly generated 1117 pseudo-absences
locations across the study area, matching the number of observed
bumblebee presence locations. We generated the same number of
pseudo-absences as presences to avoid problems associated with un-
balanced prevalence (Titeux, 2006; Mateo et al., 2012). We indepen-
dently ran eight modeling algorithms namely Artificial Neural Network
(ANN), Classification Tree Analysis (CTA), Flexible Discriminant Anal-
ysis (FDA), Generalized Additive Model (GAM), Generalized Boosting
Model (GBM), Generalized Linear Model (GLM), Maximum Entropy
(MAXENT), and Random Forest (RF). During modeling, we kept Prev-
alence = 0.5 to ensure equal weighting of presences and absences, as this
approach yields the best results (Barbet-Massin et al., 2012; Thuiller
et al., 2020). To evaluate model performance, we used the area under
the curve (AUC) of the receiver operating characteristic (ROC) and true
skill statistic (TSS) based on 20 model runs with a randomly sampled
training and testing data set of 75 % and 25 % of the presence records,
respectively. We compared each model based on mean values (of 20
model runs) of ROC and TSS score. Apart from individual modeling, we
also used an ensemble approach where we took the mean and variance
of all the models. We included a model in ensembling if it had AUC
> 0.75 and true skill statistics (TSS) > 0.4; as these values are considered
minimum evaluation scores for a useful model (Engler et al., 2011). In
order to compare values among models, we normalized variable
importance per model to 100 (Sherpa et al., 2021). We performed all the
modeling and evaluation procedure using the R package ‘biomod2’
(Thuiller et al., 2020).

To evaluate the performance of different SDMs, we compared the
histograms of their raster outputs. A raster histogram is a bar chart
depicting the distribution of pixel values in a raster image, with the x-
axis representing pixel values and the y-axis indicating pixel counts. In
the context of SDMs, the x-axis shows habitat suitability, ranging from
0 (not suitable) to 1 (most suitable), while the y-axis represents the
number of pixels corresponding to each suitability score. A negatively
skewed histogram suggests that more pixels are assigned higher suit-
ability scores, indicating that the SDM identifies a larger area as suitable
habitat compared to others. Conversely, a positively skewed histogram
implies fewer pixels are deemed highly suitable, meaning this SDM
designates less area as suitable habitat relative to its counterparts. This
comparison helps in assessing how different SDMs categorize habitat
suitability. A platykurtic histogram, with a kurtosis value less than 0,
indicates a flatter distribution with fewer outliers, meaning the pixel
values are more evenly spread, and extreme suitability or unsuitability is
less likely. Conversely, a leptokurtic histogram, with a kurtosis value
greater than 0, suggests a sharper peak and a higher likelihood of
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outliers. In SDMs, this implies that certain areas may be unusually
marked as highly suitable or unsuitable for a species. We calculated the
histogram of each SDM raster in R package raster (Hijmans, 2022), then
calculated skewness and kurtosis of each histogram as described by
Joanes and Gill (1998) in R package ‘€1071° (Meyer et al., 2022). A
complete workflow is given in the Fig. 1.

We performed statistical and spatial analysis in R (version 4.2.1)
language and environment for statistical computing (R Core Team,
2022).

5. Results

In this study, we evaluated model performance using both ROC and
TSS metrics. The ROC values above 0.8 are generally considered
reasonable and informative, but it can be biased (Swets, 1988). To
mitigate this, we also used TSS, which is prevalence-independent, with
values over 0.4 being deemed acceptable (Aratjo et al., 2005). The
evaluation of eight SDMs based on TSS and ROC values revealed sig-
nificant differences in performance. The Ensemble model stood out with
the highest TSS of 0.710 and ROC of 0.945, closely followed by RF with a
TSS of 0.690 and ROC of 0.925, indicating their superior predictive
accuracy and discrimination capabilities. Moderate performers included
GBM at TSS 0.589 and ROC 0.864, GAM at TSS 0.563 and ROC 0.842,
CTA at TSS 0.568 and ROC 0.827, and FDA at TSS 0.512 and ROC 0.830.
In contrast, ANN and MAXENT both scored a TSS of 0.507 with ROC
values of 0.804 and 0.822, respectively, while the GLM performed the
poorest with a TSS of 0.388 and ROC of 0.745. Table 1, Figs. 2 and 3
provide a comparative account of the ROC and TSS values of eight SDMs,
while Fig. 9 A presents the ROC and TSS values for the ensemble SDM.

All SDMs exhibit positive skewness, indicating right-skewed distri-
butions where data is concentrated towards the lower values, with a few
extreme higher values. The CTA has the highest skewness (1.186),
implying the most pronounced asymmetry, while GLM has the lowest
skewness (0.293), suggesting a distribution closer to symmetric. For
kurtosis, all models are platykurtic, show negative values, signifying
distributions with lighter tails and flatter peaks. The GBM (-1.206) and
MAXENT (-1.189) have the most negative kurtosis, indicating very flat
distributions with light tails. In contrast, CTA (-0.349) has the least
negative kurtosis, meaning its distribution, while still flatter than
normal, is closer to having normal-tailed behavior. Overall, these results
suggest that all SDMs, while skewed to the right across all models, differ
in their tail behavior and peak flatness. Fig. 4 presents a comparative
account of habitat suitability for eight SDMs, and Fig. 5 shows the
habitat suitability for the ensemble SDM. Fig. 6 provides a comparative
account of the histograms for eight SDMs, while Fig. 7 presents the
histogram for the ensemble SDM.

In this work, we found that among the bioclimatic variables, Bio 10
consistently emerged as the most influential factor across multiple
models, with notable contributions in GBM at 53.259 %, Ensemble
model at 38.777 %, MAXENT at 38.095 % and CTA at 33.168 %. Other
significant bioclimatic variables included Bio 12 and Bio 2, which also
showed substantial contributions across several models like CTA,
Ensemble, FDA, GAM, GLM and MAXENT. Models such as ANN and RF
demonstrated a relatively even distribution of importance among the
environmental variables considered. In both of these models, the
contribution of all the bioclimatic variables range between 10 % and
27 %. In contrast, anthropogenic factors such as Human Footprint and
LULC exhibited lower contributions, across all models, with Human
Footprint values dropping to 0.018 % in GLM and LULC values dropping
to 0.095 % in GBM, indicating that while human impacts were present,
they may not have been as immediate or influential as climatic factors in
shaping bumblebee distribution. Table 2 and Fig. 8 provides a
comparative account of variable contribution for eight SDMs, and
Fig. 9b presents the variable contribution for the ensemble SDM.
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Fig. 6. Comparative account of the histograms of eight species distribution models (SDMs) — Artificial Neural Network (ANN), Classification Tree Analysis (CTA),
Flexible Discriminant Analysis (FDA), Generalized Additive Model (GAM), Generalized Boosting Model (GBM), Generalized Linear Model (GLM), Maximum Entropy
Model (MAXENT), and Random Forest (RF). The bins for each histogram were calculated by following Freedman and Diaconis (1981). The vertical straight line
indicates mean value and vertical dotted line indicates median value. The x-axis shows habitat suitability (0 = not suitable, 1 = most suitable) and the y-axis
represents the number of pixels corresponding to each suitability score. The S represents skewness and K represents kurtosis score for each histogram.

6. Discussion

There is a growing need for research on insect diversity in a changing
world, with SDMs serving as the primary tool to assess the impacts of
climate change, land use changes, and other environmental shifts on
species distributions, while also supporting conservation planning and
selection. Since mountain ecosystems consist of unique environments
for living creatures due to their powerful climate gradients, they are

crucial for studying the effects of climate change on biodiversity. In
mountain variation in abiotic factors especially changes in temperature
and precipitation can influence diversity and activity pattern of animals
(Singh et al., 2021). Conservation biologists prioritize critical biodi-
versity areas to maximize conservation impact efficiently using limited
resources (De et al., 2023a, De et al., 2023b). At present time, research
on biodiversity has shifted from only documentation of biodiversity to
finding the mechanisms that shape the biogeography, particularly in the
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Fig. 7. Histogram of the ensemble species distribution model. The bin for the
histogram was calculated by following Freedman and Diaconis (1981). The
vertical straight line indicates mean value and vertical dotted line indicates
median value. The x-axis shows habitat suitability (0 = not suitable, 1 = most
suitable) and the y-axis represents the number of pixels corresponding to each
suitability score. The S represents skewness and K represents kurtosis score.

light of climate and habitat change. Numerous ecological models have
been developed for diverse purposes, such as biodiversity conservation,
protecting rare species, and assessing habitat suitability. In many ap-
plications of SDMs, the predictive performance is important and most
often, the users look for the algorithm that delivers most predictions
(Hao et al., 2020). The predictive performance of SDM algorithms de-
pends on situations and any single class of algorithms is not identified
that can predict species distribution better than others consistently
(Segurado and Aratijo, 2004). It has been suggested that users may build
an ‘ensemble’ prediction by combining predictions across different
modeling methods to achieve better prediction, which is used in many
recent SDM studies (Araujo and New, 2007; Hao et al., 2020). However,
some study (Hao et al., 2020) found that there was no certain advantage
to using ensembles over individual models.

In this work, the evaluation of eight SDMs for predicting Bumblebee
habitats in high-altitude regions revealed important differences in
model performance based on TSS and ROC values. The RF and Ensemble
models performed the best, showing high agreement between predicted
and observed distributions and strong discriminatory ability between
presence and absence of species. In contrast, the GLM had poor results,
making it unreliable for predicting Bumblebee distributions. The ANN
also failed to deliver impressive outcomes, while the Generalized
Boosted Model GBM offered a solid balance of accuracy and discrimi-
nation. Models such as the GAM and FDA performed moderately well,
making them suitable for applications where a moderate level of accu-
racy was sufficient. Meanwhile, the MAXENT and CTA models showed
intermediate results. Although they had decent ROC values, their lower
TSS scores suggested they might not be as reliable in distinguishing
between true positives and false positives.

The skewness and kurtosis values of the SDM raster data for

Table 2
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Bumblebee distribution in high altitude provide critical insights into the
behavior of each model’s output. The asymmetry of distribution is
measured by skewness and positive skewness values indicate right-
skewed distribution. Higher skewness values indicate presence of out-
liers. In this work, we observed that the CTA had the highest skewness,
indicating that its distribution was right-skewed, meaning it had a ten-
dency to produce higher predicted values compared to other models. In
contrast, GLM showed the lowest skewness, indicating a more sym-
metrical distribution that could suggest more consistent predictions.
Kurtosis assesses the ‘tailedness’ of a distribution, with negative values
indicating a platykurtic distribution, where more probability mass is
concentrated around the shoulders (one standard deviation from the
mean) and less around the tails (extreme values), making such distri-
butions less likely to generate outliers, whereas distributions with high
kurtosis are more prone to producing outliers. In this work, we observed
that the GBM and GAM displayed the lowest kurtosis values, implying
flatter distributions with fewer outliers compared to models like CTA,
which retained some extreme values (predicted species distribution
values that were significantly above average compared to other pre-
dictions made by the model). The RF model showed moderate skewness
and relatively low kurtosis, suggesting that it captured variability
effectively while remaining robust against outliers. The ANN also pre-
sented a good option with higher skewness than RF but slightly lower
kurtosis, indicating its capability to model complex relationships while
managing extreme values reasonably well. Models such as GLM and
MAXENT, with their lower skewness and kurtosis, were suitable for
scenarios where extreme values were less prevalent, providing stable
predictions overall. Finally, the ensemble approach offered a balanced
method by combining multiple models to enhance predictive perfor-
mance and reduce uncertainty, making it a very viable option. This
result aligned with Tripathi et al. (2024), who advocated for ensemble
approaches to study the effects of climate change on biodiversity in
India’s biogeographic zones.

The RF model effectively captures nonlinear relationships and in-
teractions among environmental variables without predefined func-
tional forms, aligning well with complex species—environment dynamics
(Hao et al., 2019). This flexibility enhances model fit and generalization
across varying conditions. RF also performs well with imbalanced,
limited, or presence-only datasets, offering reliable predictions where
data are sparse (Valavi et al., 2021). By averaging multiple decision
trees, RF minimizes variance and over fitting, producing stable results
even with noisy inputs (Kaky et al., 2020). Species distributions often
form clusters, reflecting inherent spatial structure and autocorrelation
rather than random placement, and certain habitats naturally provide
more suitable conditions than others. In this context, RF excels because
it can process many environmental predictors without being troubled by
collinearity and can easily capture nonlinear species—environment re-
sponses (Chiaverini et al., 2023). Its accuracy remains high even when
occurrence data are spatially clumped, and it reliably identifies influ-
ential variables while maintaining temporal stability despite correlated
climate inputs (Unnithan Kumar et al., 2021; Hanberry, 2024). At the
broader = methodological level, ecological systems  show

Comparative account of the variable contribution (in percentage) of eight species distribution models (SDMs) — Artificial Neural Network (ANN), Classification Tree
Analysis (CTA), Flexible Discriminant Analysis (FDA), Generalized Additive Model (GAM), Generalized Boosting Model (GBM), Generalized Linear Model (GLM),

Maximum Entropy Model (MAXENT), Random Forest (RF) and Ensemble model.

Variables ANN CTA FDA GAM GBM GLM MAXENT RF Ensemble
Bio2 13.287 19.579 16.26 14.058 14.275 33.318 20.964 14.984 17.659
Bio7 11.487 10.626 5.714 5.222 3.599 24.17 7.305 10.082 4.285
BiolO 21.365 33.168 31.813 29.749 53.259 3.947 38.095 26.852 38.377
Biol2 17.164 15.023 28.602 31.273 16.438 5.196 19.777 15.753 23.88
Biol5 14.244 8.193 13.083 12.358 8.177 32.275 8.948 16.4 10.707
Biol9 16.299 10.337 2.897 3.254 3.688 0.636 2.919 10.645 3.384
Human footprint 3.118 2.092 0.841 1.861 0.471 0.018 1.006 3.262 0.913
LULC 3.036 0.982 0.791 2.225 0.095 0.44 0.986 2.021 0.395
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Fig. 8. Comparative account of variable contribution of eight species distribution models (SDMs) — Artificial Neural Network (ANN), Classification Tree Analysis
(CTA), Flexible Discriminant Analysis (FDA), Generalized Additive Model (GAM), Generalized Boosting Model (GBM), Generalized Linear Model (GLM), Maximum

Entropy Model (MAXENT), and Random Forest (RF).

complementarity when different species use resources in distinct ways,
boosting overall performance. Ensemble model mirrors this logic as it
fuses multiple individually modest but complementary algorithms so
that each compensates for the shortcomings of others which Civ-
antos-Gomez et al. (2021) describe as a “smart mix of weak models”. Such
ensemble integrates method-specific strengths, correct individual bia-
ses, and yield higher predictive accuracy and robustness under novel
environmental scenarios, while also allowing for explicit estimation of
model uncertainty (Araujo and New, 2007). For these reasons, the RF
and ensemble model generally outperform other models. Therefore, for
effective modeling of Bumblebee distributions in high-altitude areas,
prioritizing RF and Ensemble models are advisable due to their favorable
statistical properties and robustness against outliers.

In most bumblebee species, hibernating queens emerge in early
spring, coinciding with the blossoming of flowers and late summer, the

queens have completed colony reproduction (Mola, 2021). During the
summer, bumblebees increase their foraging and flying activity, as
temperatures influence their flight capabilities (Martinet et al., 2021).
Therefore, the temperature during the summer season plays a critical
role in their behavior and survival. In this study, we found that Bio 10,
representing the mean temperature of the warmest quarter, significantly
influences bumblebee distribution in most SDMs. But, bumblebees are
sensitive to heat stress (Goodwin and Wang, 2025), so rising
warm-season temperatures may force upward shifts in their suitable
habitats. Policymakers can use these insights to designate climate
refugia, prioritize high-altitude zones for conservation, and support
adaptive land-use policies that anticipate these range shifts. Incorpo-
rating thermal suitability thresholds into agricultural zoning and con-
servation corridor design can prevent habitat fragmentation and ensure
pollination continuity under warming trends. Annual rainfall affects
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Fig. 9. (A) The receiver operating characteristic (ROC) and true skill statistic (TSS) values of ensemble species distribution model (B) Variable contribution for

ensemble species distribution model.

both soil and atmospheric moisture, which plays a critical role in the
flowering phenology of nectar plants. Since bumblebees rely on the
nectar of these plants for food, changes in flowering patterns due to
variations in soil moisture directly impact their feeding resources. As a
result, rainfall indirectly influences the distribution of bumblebees by
affecting the timing and availability of the nectar plants they depend on.
Also, since bumblebees nest in the ground (Sharma et al., 2024), they
rely heavily on soil moisture for successful nesting. However, excessive
rainfall can threaten their nests, leading to potential destruction. Since
atmospheric humidity is proportional to precipitation and influences the
flying and foraging activity of bumblebees (Sanderson et al., 2015), their
distribution is consequently affected by rainfall. Thus, in this study, we
found that Bio 12, which represents Annual Precipitation, plays a crucial
role in most SDMs for bumblebees. Also, we would like to point out that
because the Eastern Himalayas receive significantly more rainfall than
the central and western regions (Nandargi and Dhar, 2011), due to
variation in monsoon patterns, the impact of Bio 12 on Eastern Hima-
layan bumblebee populations may be greater. Policymakers can there-
fore promote water-efficient agro-ecological practices such as rainwater
harvesting, and drought-resilient crop varieties especially in Trans Hi-
malayan region to sustain floral resources and ecosystem services. In
mountain ecosystems, the physiology and flowering phenology of an-
giosperms are sensitive to frost events (Inouye, 2008), which can impact
pollinator species like bumblebees. Frost formation is influenced by the
difference between maximum daytime and minimum night-time tem-
peratures. Bio 2, representing the mean diurnal temperature range,
plays a crucial role in predicting frost events (Zheng et al., 2015; Zohner
et al., 2020). Areas with a lower mean diurnal range tend to experience
fewer frost events, creating more favorable conditions for bumblebee
populations. Thus in this work we observed that in most of the SDMs the
Bio 2 plays an important role. In hilly terrain diurnal microclimate is
significantly affected by topography (John et al., 2024). High diurnal
variation can stress bumblebee, leading to reduced foraging efficiency
and altered pollination patterns (Chapman et al., 2022; He et al., 2025).
Thus, from a policy perspective, maintaining microclimatic stability
through vegetation cover, agro-forestry, and shade management be-
comes crucial in Himalayas. Local agricultural and forestry programs
can integrate such microclimate-buffering strategies to enhance polli-
nator resilience and productivity.

In mountainous regions like the Himalayas, it is not feasible to
sample every inch of the terrain or collect species data from every
location. Sampling efforts are typically concentrated on certain areas
and timeframes, which means the absence of a species in collected data
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does not necessarily confirm its absence in that region. The SDMs are
thus built based on the available samples, and as a result, the physical
characteristics of sampled regions are emphasized in these models.
When certain environmental variables are prioritized over others in the
modeling process, it can lead to a skewed understanding of the species-
environment relationship. This bias occurs when the algorithm places
excessive weight on certain variables, resulting in inaccurate predictions
of species distributions by over-representing those influences while
neglecting others of equal importance. However, when all relevant
variables are treated equally, the resulting models are more likely to be
transferable across different regions or conditions, increasing their
predictive reliability. In our work, SDMs such as ANN and RF exhibited a
more balanced distribution of importance across the environmental
variables, supporting the need for equitable consideration of all
contributing factors.

The Global Biodiversity Conservation Initiative and the United Na-
tions’ SDGs have set targets for biodiversity conservation, particularly
within 2030 and 2050. Among these, the ‘30 x 30 Initiative’ aims to
designate 30 % of the world’s land and oceans as protected areas by
2030 while promoting the achievement of other critical SDGs (De and
Dwivedi, 2024a). Biodiversity supports the ecosystem balance and is
vital for advancing progress toward the SDGs (De and Dwivedi, 2024b).
The Himalayan region, supporting over 50 million inhabitants and
providing ecosystem services that benefit more than a billion people,
plays a vital role in achieving these objectives (Verma et al., 2021).
Pollination, a key ecosystem service, is fundamental to Himalayan
ecosystems, and bumblebees are indispensable pollinators in forested
and agricultural landscapes of this region. The present study advances a
sustainability-oriented understanding of Himalayan pollinator conser-
vation by integrating SDMs with the SDGs. By evaluating eight SDM
algorithms for Bombus species, our work identifies RF and ensemble
approaches as the most reliable tools for predicting pollinator habitats.
These models, driven primarily by warm-quarter temperature and
annual precipitation, provide spatially explicit maps of habitat suit-
ability that are essential for linking biodiversity science with sustainable
development policy in fragile mountain ecosystems. These habitat
suitability maps become operational decision-support layers for agri-
cultural advisors (identifying fields at risk of pollination shortfall),
protected-area planners (delineating refugia and connectivity corri-
dors), and climate practitioners (targeting micro-refugia and restoration
where climatic suitability persists). It was observed that bees have the
potential to contribute to 15 of the 17 SDGs and at least 30 specific SDG
targets (Patel et al., 2020). The animal pollination can substantially
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Fig. 10. Schematic representation of how species distribution models of pollinators can help achieving sustainable development goals in the Himalayas.

increases yield stability and reduces variability across years, a service
that is especially valuable under climatic uncertainty. Thus, SDMs
linking pollinator habitat and climate drivers equip managers and
communities with the spatial foresight necessary to safeguard food se-
curity, enhance the resilience of socio-ecological systems, and protect
biodiversity (Fig. 10). Our work contributes directly to SDG 2 (Zero
Hunger) by revealing where pollination services are most vulnerable,
thereby supporting food security through targeted agro-ecological in-
terventions, crop diversification, and habitat restoration. Reliable
pollinator mapping enables planners to safeguard insect-dependent
crops and sustain local livelihoods dependent on fruits, vegetables,
and medicinal plants. For SDG 13 (Climate Action), the study demon-
strates how pollinator SDMs can identify climate refugia and anticipate
upslope range shifts under warming scenarios. This information un-
derpins adaptive management strategies such as protecting
high-elevation habitats, enhancing floral resources, and developing
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climate-resilient agricultural practices to mitigate the effects of climate
change on pollination services. In relation to SDG 15 (Life on Land), the
research supports biodiversity protection by highlighting priority zones
for pollinator conservation that also preserve vital plant—pollinator
networks in alpine meadows and forest systems. These efforts maintain
ecological integrity and ensure the continued provision of ecosystem
services. Through SDG 17 (Partnerships for the Goals), the study em-
phasizes the role of collaborative monitoring, citizen science, and ca-
pacity building in improving SDM inputs and promoting community
engagement. The SDMs for insect pollinators can translate directly into
spatially explicit guidance for conservation zoning, agro-ecological
planning, and Himalayan regional policy by mapping present and
future habitat suitability under land-use and climate scenarios. By SDM
high suitability and climatically persistent areas can be identified for
bumblebees and other pollinators and such areas can be prioritized as
core conservation zones, ecological corridors, or climate refugia within
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Himalayan protected area networks and community-managed forests. In
high altitude agricultural landscapes, SDM outputs can be overlaid with
cropping patterns and pollination-dependent crops allow planners to
target agri-environment schemes, floral strips, and reduced pesticide
zones where pollinator richness and ecosystem service potential are
highest. The Himalayas, spanning India, Nepal, Bhutan, and China, host
diverse pollinator communities distributed across steep altitudinal and
climatic gradients. Because these species occur across multiple national
boundaries, their conservation requires multi-scale governance frame-
works that promote policy harmonization throughout the region. In this
context, SDMs can serve as a unifying scientific tool, enabling joint
monitoring systems, coordinated identification of connected conserva-
tion areas, and shared climate-adaptation strategies. By aligning na-
tional land-use plans with predicted pollinator movement pathways and
phenological shifts, the Himalayan countries can collaboratively safe-
guard pollination services essential for biodiversity, agriculture, and
mountain livelihoods.

This study contributes uniquely to pollinator biogeography by
showing that Himalayan bumblebee distributions are primarily shaped
by warm-season temperature (Bio10) and annual precipitation (Bio12),
which is consistence with global findings that climatic thresholds
strongly control Bombus range dynamics (Kerr et al., 2015; Cameron and
Sadd, 2020; Soroye et al., 2020). Unlike most SDM studies that model
single species, this work integrates all Bombus species at the genus level,
capturing the ecological coherence of high-elevation assemblages and
offering a system-wide perspective particularly relevant for the world’s
major alpine biodiversity hotspot. The comparison of eight algorithms,
complemented by histogram-based skewness and kurtosis evaluation,
provides a methodological advance seldom used in pollinator SDMs. By
identifying RF and ensemble models as most robust, the study
strengthens climate-adaptation planning for Himalayan pollinators.

The present study, while providing insights into Bombus habitat
suitability across the Himalayas, is subject to some limitations that
should be acknowledged when applying the results to conservation
planning. The reliance on opportunistic field sampling and heteroge-
neous literature-derived occurrences can introduce spatial sampling
bias, as surveys were concentrated along accessible valleys, roadsides,
and stream corridors, while vast high-altitude or remote habitats
remained unsampled. Such sampling increases the likelihood that
pseudo-absences, although randomly generated, may inadvertently fall
in environmentally suitable but unsurveyed areas, potentially reducing
model discrimination and inflating model sensitivity. Extracting co-
ordinates from local descriptions can introduce positional uncertainty,
which can misrepresent fine-scale climatic or land-use conditions in
steep Himalayan terrain. The use of genus-level pooling may obscures
species-specific niche differences and underestimate microhabitat
specialization, especially for narrow-ranged taxa. Though the models
provide a broad-scale foundation for identifying potential conservation
priorities, their outputs should be interpreted with caution and com-
plemented with targeted field validation, species-level surveys, and
finer-resolution environmental data before informing site-level man-
agement decisions or protected-area expansion.

7. Conclusion

The SDMs of pollinators offer a strategic approach to conserving
biodiversity by identifying key habitats and anticipating environmental
changes. By understanding where pollinators thrive, SDMs help guide
habitat restoration and protection efforts, ensuring ecosystem resilience.
These models support local livelihoods by identifying areas where
pollination services can enhance crop yields, providing economic ben-
efits to rural communities. Integrating climate forecasts, SDMs promote
adaptive land-use planning, aligning conservation with sustainable
agricultural practices. In this work we evaluated eight SDM algorithms,
using genus Bombus as the taxonomic unit to analyze bumblebee dis-
tribution in the Himalayas because genus-level models are also valuable
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for identifying critical habitats and understanding biodiversity patterns,
especially in the context of climate change and habitat alteration. Seven
algorithms (ANN, CTA, FDA, GAM, GBM, MAXENT, RF) performed well
based on ROC and TSS scores but they vary in skewness and kurtosis.
Among single algorithms, the RF stood out as the most effective model
for predicting bumblebee distribution due to its robust statistical prop-
erties. However, the ensemble approach proved superior overall in
terms of accuracy and reliability. Given the variability in model per-
formance, we urge researchers to evaluate all available models before
selecting the most appropriate one based on study area, number of
species, sample size, and spatial variables. Adopting a model without
thorough evaluation may lead to incorrect predictions that could hinder
conservation efforts. The best-practice standards that incorporate
biodiversity theories, abiotic and biotic factors, trait-based approaches,
meta-ecosystem frameworks, and field observations should be estab-
lished and validated by the scientific community to ensure robust model
evaluation, decision-making, and policy development in biodiversity
conservation and achieving SDGs.
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