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A B S T R A C T

Species distribution models (SDMs) are computational tools utilized to predict the geographical range of species 
by analyzing occurrence data and environmental conditions. While multiple algorithms are available for 
implementing SDMs, studies focusing on pollinators like bumblebees (genus Bombus) in the Himalayas remain 
scarce, despite their ecological importance in forest and agroecosystems. We performed this work to identify the 
most effective SDM algorithms for modeling the distribution of genus Bombus in the Himalayas, thereby 
improving conservation strategies. We compared eight SDM algorithms, including Artificial Neural Network 
(ANN), Classification Tree Analysis (CTA), Flexible Discriminant Analysis (FDA), Generalized Additive Model 
(GAM), Generalized Boosting Model (GBM), Generalized Linear Model (GLM), Maximum Entropy Model 
(MAXENT), and Random Forest (RF), along with an ensemble method. Evaluations were based on metrics such as 
the area under the curve (AUC) for receiver operating characteristic (ROC), true skill statistic (TSS), and sta
tistical properties like skewness and kurtosis. Among single models, RF stood out for its strong ROC, TSS, and 
statistical properties. The ensemble approach, however, was overall the best option across these metrics. Re
searchers are encouraged to select SDM algorithms after careful evaluation of study-specific factors such as 
geographic area, sample size, species diversity, and spatial variables. The scientific community should develop 
and authenticate optimal standards that integrate biodiversity concepts, ecological traits, environmental factors, 
ecosystem-based approaches, and field data to ensure effective model assessment, informed decision-making, and 
policy formulation for conserving biodiversity and advancing sustainable development goals in the Himalayas.

1. Introduction

Over the past few decades, ecologists have focused on understanding 
the mechanisms that drive biodiversity patterns at different spatial 
scales (Dey et al., 2024). Species Distribution Models (SDMs) are such 
techniques that integrate environmental variables and occurrence of 
species to forecast the distribution of species across landscapes. When 
paired with geographic information systems (GIS), SDMs provide spatial 
predictions of species presence in areas lacking prior distribution data. 

Despite variations in algorithms, the underlying principles of SDMs are 
similar. First, the area of interest is divided into grid cells at a defined 
resolution. Next, species presence (or abundance) data are used as the 
dependent variable, while environmental factors such as elevation, 
temperature, and precipitation serve as predictor variables. The model 
then calculates the suitability of each grid cell for species occurrence 
based on these environmental inputs. The final goal of conservation, 
which is to protect maximum species and habitats with limited re
sources, depends on identifying distribution patterns and extinction 
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risks of biodiversity at regional and local scales, a process dependent on 
information about the spatial variation of species composition (De et al., 
2023a). Thus, the SDMs allow for a better understanding of species 
distributions, even in regions with limited biological data, offering 
valuable insights for conservation and land-use planning.

Bumblebees (Hymenoptera: Apidae: Bombini: Bombus) are insect 
pollinators adapted to thrive in cold environments due to their ther
moregulatory abilities, which allow them to remain active even at low 
temperatures. This adaptation is particularly crucial in high-altitude 
regions, where harsh conditions such as cold temperatures and 
reduced oxygen levels limit the activity of other pollinators (Dillon and 
Dudley, 2014). Bumblebees play an indispensable role in pollinating 
both wild and agricultural plants in these extreme environments, sus
taining the health of mountain ecosystems and temperate zones. Easily 
recognized by their large, fuzzy bodies adorned with black-and-yellow 
stripes, bumblebees consist of approximately 265 species worldwide, 
with 62 species found in the Himalayas, nine of which are endemic to 
the region (Williams, 2022; https://bumblebeespecialistgroup.org/). 
However, recent studies have raised alarms about a significant decline in 
insect populations, especially among flying insects like bumblebees, in 

temperate regions (Eggleton, 2020). In America, Europe and Asia this 
decline is driven by several detrimental factors like climate change, 
competition with invasive species, attack of pathogen, loss of habitat 
and use of pesticides (Cameron and Sadd, 2020). In Asia, they are facing 
threats in the highlands of Japan, China, the Tibetan Plateau and the 
Himalayas (Nagamitsu, 2023; Singh et al., 2022a; Singh et al., 2024; 
Naeem et al., 2024). The loss of bumblebee species threatens to disrupt 
crucial pollination services, potentially triggering an extinction vortex 
where both pollinators and the plants they support face mutual extinc
tion (Goulson et al., 2008). Furthermore, climate change is forcing 
bumblebees to shift their ranges to higher elevations, creating spatial 
mismatches between the bees and their plant pollinators (Egawa and 
Itino, 2019). The introduction of bumblebees for agricultural pollination 
has led some species to become invasive (López-Aguilar et al., 2024). 
Monitoring changes in bumblebee distribution and abundance is 
essential for effective conservation efforts in mountain regions to miti
gate these risks.

The SDMs of pollinators are transformative tools for sustainable 
development in fragile ecosystems like the Himalayas. The SDMs serve 
as essential tools for pollinator conservation, aiding in various 

Fig. 1. The flow-chart of the preparation of species distribution models (SDMs) and their evaluation processes.
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sustainable development goals (SDGs). Firstly, they can identify critical 
habitats crucial for pollinators’ survival, facilitating targeted conserva
tion strategies that support terrestrial biodiversity (SDG 15). Secondly, 
SDMs forecast regions where pollination services are vulnerable to 
habitat degradation or climatic changes, enabling sustainable agricul
ture and enhancing food security (SDG 2). Thirdly, by examining climate 
change impacts on pollinator distributions, SDMs contribute to adaptive 
approaches for ecological resilience (SDG 13). Beyond ecological ap
plications, SDMs can integrate citizen science contributions, encour
aging community engagement and enhancing knowledge dissemination. 
This promotes educational development (SDG 4) and strengthens 
collaborative global efforts (SDG 17). By preserving essential services 
like pollination, SDMs reinforce sustainable natural resource use and 
boost long-term agricultural productivity (SDG 12). In addition, effec
tive pollinator management contributes to poverty alleviation by 
improving agricultural yields and farmer incomes (SDG 1). It also pro
motes healthier environments by minimizing pesticide reliance and 
maintaining natural areas that benefit human well-being (SDG 3). 

Incorporating climate adaptation into pollinator strategies safeguards 
ecological services while creating employment opportunities in rural 
landscapes (SDG 8). By connecting biodiversity conservation with eco
nomic and social growth, SDM supports multiple SDGs and promotes 
resilience in Himalayan communities.

Recent works on SDMs for various animals and plants, including 
bumblebees, have increasingly adopted an ensemble approach, which 
combines multiple models rather than relying on a single one. However, 
research suggests that single-algorithm models can produce distribution 
maps with accuracy comparable to those generated by ensemble 
methods (Kaky et al., 2020). This raises questions about the supposed 
superiority of ensemble models, indicating that they may not offer a 
distinct advantage. The challenge, however, lies in determining which 
model is best suited for a particular species and habitat, as no single 
algorithm consistently outperforms others. Different algorithms can 
produce varying results depending on the species and environmental 
conditions studied. Despite the growing use of SDMs in biodiversity 
assessments, there are no universally accepted standards or best prac
tices for building these models or evaluating their effectiveness. Given 
the importance of species distribution studies in shaping conservation 
policies, especially in the face of global climate changes standardized 
process for developing SDMs tailored to specific taxa and regions is 
needed to ensure accurate and actionable insights for conservation 
efforts.

The Himalayas, with rich biodiversity shaped by diverse landscapes 
and microclimatic conditions, provide a unique opportunity for genetic, 
evolutionary, and ecological studies, while the recent decline in species 
highlights the urgent need to understand the relationship between 
ecological factors and biodiversity for effective conservation and man
agement (Singh et al., 2022b; De and Dwivedi, 2023; Parab et al., 2023). 
The Himalayas is the most extensively studied region among all Indian 
biogeographical zones for understanding the potential current and 
future distribution of species using SDMs. In the Himalayan ecosystem, 
bumblebees play a crucial ecological role, yet studies focusing on their 
distribution models are sparse and rely mainly on single-algorithm 
methods (Singh et al., 2022a; Singh et al., 2024). The present study 
aims to determine which algorithm performs better for modeling the 
distribution of bumblebees in the Himalayan mountain environment, 
providing insights that could lead to more accurate and effective con
servation strategies for this important species.

Table 1 
Comparative account of the receiver operating characteristic (ROC) and true 
skill statistic (TSS) values of eight species distribution models (SDMs) – Artificial 
Neural Network (ANN), Classification Tree Analysis (CTA), Flexible Discrimi
nant Analysis (FDA), Generalized Additive Model (GAM), Generalized Boosting 
Model (GBM), Generalized Linear Model (GLM), Maximum Entropy Model 
(MAXENT), Random Forest (RF) and Ensemble model.

Models Evaluation methods Mean SD

ANN TSS 0.507 0.075
ROC 0.804 0.035

CTA TSS 0.568 0.038
ROC 0.827 0.024

FDA TSS 0.512 0.028
ROC 0.83 0.013

GAM TSS 0.563 0.022
ROC 0.842 0.014

GBM TSS 0.589 0.025
ROC 0.864 0.012

GLM TSS 0.388 0.036
ROC 0.745 0.018

MAXENT TSS 0.507 0.034
ROC 0.822 0.021

RF TSS 0.69 0.02
ROC 0.925 0.008

Ensemble TSS 0.71 -
ROC 0.945 -

Fig. 2. Comparative account of the receiver operating characteristic (ROC) values of eight species distribution models (SDMs) – Artificial Neural Network (ANN), 
Classification Tree Analysis (CTA), Flexible Discriminant Analysis (FDA), Generalized Additive Model (GAM), Generalized Boosting Model (GBM), Generalized Linear 
Model (GLM), Maximum Entropy Model (MAXENT), and Random Forest (RF).
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2. Study area

For this study we chose the Himalayan and Trans-Himalayan terri
tories of India, Nepal, and Bhutan, spanning a geographic extent from to 
26.395343◦N to 37.088362◦N and to 97.412895◦E to 72.513077◦E. The 
Himalayas, formed approximately 55 million years ago through the 
convergence of the Indian and Eurasian Plates, is a tectonically active 
and young mountain system. Known for its complex topography and 
ecological richness, this region exhibits significant biodiversity, diverse 
landscapes, and distinct climatic conditions. The Himalayan range is 
divided into four biogeographic provinces namely North-West Hima
laya, West Himalaya, Central Himalaya, and Eastern Himalaya (Rodgers 
et al., 2000). The Trans-Himalayan region, recognized as a high-altitude 
cold desert, is subdivided into the Ladakh Mountains, the Tibetan 
Plateau, and the Sikkim Plateau (Rawat et al., 2023). The Ladakh 
Mountains include areas such as Kargil, Nubra, and Zanskar in Ladakh 
and parts of Himachal Pradesh like Lahaul-Spiti and Kinnaur, while the 
Tibetan Plateau encompasses the Changthang region of Ladakh and 
northern Uttarakhand. Besides being climatically sensitive, the region 
also faces ongoing geological instability, which increases its risk of 
earthquakes and other natural disasters.

3. Data

We collected occurrence records of bumblebees through a combi
nation of fieldwork and literature surveys. We performed fieldwork 
between May 2018 and February 2020 in the western Himalaya, spe
cifically in the Great Himalayan National Park Conservation Area 
(GHNPCA), and the Trans-Himalayan regions of Lahaul-Spiti and Leh- 
Ladakh. In GHNPCA, we sampled bumblebees from the Parvati, Tir
than, Sainj, and Jiwa Nala valleys. In Ladakh, we gathered samples from 
the Shyok, Nubra, and Indus valleys, while in Lahaul, our sampling sites 
were the Bhaga, Chandra, Miyar, and Chenab valleys. At each site, we 
made a single visit and recorded species occurrences by direct obser
vation along roadsides, forest trails, and hilly treks during the day. We 
collected specimens using the sweep netting method, with sampling 
locations purposefully chosen near streams due to the higher abundance 
of flowering plants, which are important for bumblebee foraging. Our 
methodology relied on opportunistic sampling, which offers insights 
into ecological changes, especially on a large scale (van Strien et al., 
2013). We identified 13 species from the field using identification keys 
for Indian bumblebees (Saini et al., 2015), and submitted voucher 
specimens to the museum. For further details on the sampling methods, 

please refer to Singh et al., 2022 and Singh et al., 2024. Through an 
extensive literature survey, we gathered secondary data on bumblebee 
occurrences across the Trans-Himalaya and Western Himalaya regions 
(Williams, 1991; Williams, 2004; Williams et al., 2010; Saini et al., 
2011; Streinzer et al., 2019). Although these references lacked GPS co
ordinates for most species, they provided the names of specific localities 
and their elevational ranges. Given the narrow foraging range of bum
blebees (Gómez-Martínez et al., 2020), we used Google Earth Pro to 
carefully extract GPS coordinates for each species at each location 
(Singh et al., 2024). To standardize the data, we constructed a 1 km² grid 
covering the entire study area. As the home range of bumblebees is 
typically 250–350 m from the nest (Dramstad, 1996), this grid size 
maximized the encounter rate for individual species. We eliminated 
duplicate species records within the same grid to ensure data accuracy. 
This led us to make occurrence data on a total of 32 species of the genus 
Bombus (B. abnormis, B. agrorum, B. asiaticus, B. avinoviellus, B. breviceps, 
B. eximius, B. ferganicus, B. festivus, B. flavescens, B. funerarius, B. genalis, 
B. grahami, B. haemorrhoidalis, B. hypnorum, B. lapidarius, B. lemniscatus, 
B. lepidus, B. lucorum, B. luteipes, B. melanurus, B. miniatus, B. mirus, 
B. parthenius, B. pressus, B. pyrosoma, B. rufofasciatus, B. semenovianus, 
B. simillimus, B. subtypicus, B. trifasciatus, B. tunicatus and B. waltoni) from 
1177 locations.

For analysis we collected bioclimatic layers (WorldClim version 2) 
from worldclim gridded climate data (Fick and Hijmans, 2017) (htt 
ps://www.worldclim.org/data/index.html), land use land cover 
(LULC) data (Buchhorn et al., 2020) from https://land.copernicus.eu 
/global/products/lc and human footprint (Venter et al., 2018) from 
NASA Socioeconomic Data and Applications Center (SEDAC) (https:// 
sedac.ciesin.columbia.edu/data/set/wildareas-v3-2009-human-foot 
print).

4. Methods

We resampled all the spatial layers to 1 km² resolution by nearest 
neighbour method, as this method is appropriate for both continuous 
and categorical layers (Johnson and Clarke, 2021). To avoid multi
collinearity, we tested both the variance inflation factor (VIF), removing 
variables with VIF > 10, and Pearson’s correlation coefficient (r), 
excluding variables with r > 0.80. For modeling we used LULC, human 
footprint and six bioclimatic layers namely Bio 2 (mean diurnal range), 
Bio 7 (temperature annual range), Bio 10 (mean temperature of warmest 
quarter), Bio 12 (annual precipitation), Bio 15 (precipitation season
ality), and Bio 19 (precipitation of coldest quarter). We performed all 

Fig. 3. Comparative account of the true skill statistic (TSS) values of eight species distribution models (SDMs) – Artificial Neural Network (ANN), Classification Tree 
Analysis (CTA), Flexible Discriminant Analysis (FDA), Generalized Additive Model (GAM), Generalized Boosting Model (GBM), Generalized Linear Model (GLM), 
Maximum Entropy Model (MAXENT), and Random Forest (RF).
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the raster processing work in open source QGIS software version 3.28.11 
(https://www.qgis.org/en/site/forusers/download.html), R package 
‘usdm’ (Naimi et al., 2013) and ‘raster’ (Hijmans, 2022).

Species within the same genus often occupy distinct environmental 
niches, making it preferable to model taxa at the finest possible taxo
nomic resolution (Benkendorf et al., 2023). However, traditional SDMs 
generally assume that species within a genus exist independently, a 
scenario rarely observed in natural ecosystems. Genus-level models help 
overcome this limitation by incorporating ecological relationships 
among species. These models, when combined with co-occurrence data 
and environmental factors, improve predictive accuracy, making them a 
valuable resource for understanding distributions (Stas et al., 2020). 
They can inform conservation strategies by highlighting areas that may 
support multiple species within a genus, thus enhancing ecological 

resilience (Clarke-Crespo et al., 2020; Moradmand and Yousefi, 2022). 
Moreover, genus-level data is typically sufficient in distribution 
modeling for assessment of biodiversity as well as conservation planning 
(Benkendorf et al., 2023). This approach has been shown to be effective 
across various taxa, offering practical insights into species distribution 
patterns (Stas et al., 2020; Greenspan et al., 2021; Ross et al., 2021; Fan 
et al., 2022; Claerhout et al., 2023; Wan et al., 2023). In this work, we 
considered all species of bumblebees under the genus Bombus as a single 
taxonomic unit for distribution modeling because all of them are 
high-elevation specialist pollinators having similar habitat 
requirements.

A model can yield useful results if it is generated with random 
pseudo-absences (PA) for an adequate set of presence locations. To 
achieve optimal results in SDMs, it is recommended to run a minimum of 

Fig. 4. Comparative account of habitat suitability of bumblebees for eight species distribution models (SDMs) – Artificial Neural Network (ANN), Classification Tree 
Analysis (CTA), Flexible Discriminant Analysis (FDA), Generalized Additive Model (GAM), Generalized Boosting Model (GBM), Generalized Linear Model (GLM), 
Maximum Entropy Model (MAXENT), and Random Forest (RF).
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10 iterations for each model using at least 1000 pseudo-absences with 
equal prevalence between presences and absences (Barbet-Massin et al., 
2012). For this study we randomly generated 1117 pseudo-absences 
locations across the study area, matching the number of observed 
bumblebee presence locations. We generated the same number of 
pseudo-absences as presences to avoid problems associated with un
balanced prevalence (Titeux, 2006; Mateo et al., 2012). We indepen
dently ran eight modeling algorithms namely Artificial Neural Network 
(ANN), Classification Tree Analysis (CTA), Flexible Discriminant Anal
ysis (FDA), Generalized Additive Model (GAM), Generalized Boosting 
Model (GBM), Generalized Linear Model (GLM), Maximum Entropy 
(MAXENT), and Random Forest (RF). During modeling, we kept Prev
alence = 0.5 to ensure equal weighting of presences and absences, as this 
approach yields the best results (Barbet-Massin et al., 2012; Thuiller 
et al., 2020). To evaluate model performance, we used the area under 
the curve (AUC) of the receiver operating characteristic (ROC) and true 
skill statistic (TSS) based on 20 model runs with a randomly sampled 
training and testing data set of 75 % and 25 % of the presence records, 
respectively. We compared each model based on mean values (of 20 
model runs) of ROC and TSS score. Apart from individual modeling, we 
also used an ensemble approach where we took the mean and variance 
of all the models. We included a model in ensembling if it had AUC 
> 0.75 and true skill statistics (TSS) > 0.4; as these values are considered 
minimum evaluation scores for a useful model (Engler et al., 2011). In 
order to compare values among models, we normalized variable 
importance per model to 100 (Sherpa et al., 2021). We performed all the 
modeling and evaluation procedure using the R package ‘biomod2’ 
(Thuiller et al., 2020).

To evaluate the performance of different SDMs, we compared the 
histograms of their raster outputs. A raster histogram is a bar chart 
depicting the distribution of pixel values in a raster image, with the x- 
axis representing pixel values and the y-axis indicating pixel counts. In 
the context of SDMs, the x-axis shows habitat suitability, ranging from 
0 (not suitable) to 1 (most suitable), while the y-axis represents the 
number of pixels corresponding to each suitability score. A negatively 
skewed histogram suggests that more pixels are assigned higher suit
ability scores, indicating that the SDM identifies a larger area as suitable 
habitat compared to others. Conversely, a positively skewed histogram 
implies fewer pixels are deemed highly suitable, meaning this SDM 
designates less area as suitable habitat relative to its counterparts. This 
comparison helps in assessing how different SDMs categorize habitat 
suitability. A platykurtic histogram, with a kurtosis value less than 0, 
indicates a flatter distribution with fewer outliers, meaning the pixel 
values are more evenly spread, and extreme suitability or unsuitability is 
less likely. Conversely, a leptokurtic histogram, with a kurtosis value 
greater than 0, suggests a sharper peak and a higher likelihood of 

outliers. In SDMs, this implies that certain areas may be unusually 
marked as highly suitable or unsuitable for a species. We calculated the 
histogram of each SDM raster in R package raster (Hijmans, 2022), then 
calculated skewness and kurtosis of each histogram as described by 
Joanes and Gill (1998) in R package ‘e1071’ (Meyer et al., 2022). A 
complete workflow is given in the Fig. 1.

We performed statistical and spatial analysis in R (version 4.2.1) 
language and environment for statistical computing (R Core Team, 
2022).

5. Results

In this study, we evaluated model performance using both ROC and 
TSS metrics. The ROC values above 0.8 are generally considered 
reasonable and informative, but it can be biased (Swets, 1988). To 
mitigate this, we also used TSS, which is prevalence-independent, with 
values over 0.4 being deemed acceptable (Araújo et al., 2005). The 
evaluation of eight SDMs based on TSS and ROC values revealed sig
nificant differences in performance. The Ensemble model stood out with 
the highest TSS of 0.710 and ROC of 0.945, closely followed by RF with a 
TSS of 0.690 and ROC of 0.925, indicating their superior predictive 
accuracy and discrimination capabilities. Moderate performers included 
GBM at TSS 0.589 and ROC 0.864, GAM at TSS 0.563 and ROC 0.842, 
CTA at TSS 0.568 and ROC 0.827, and FDA at TSS 0.512 and ROC 0.830. 
In contrast, ANN and MAXENT both scored a TSS of 0.507 with ROC 
values of 0.804 and 0.822, respectively, while the GLM performed the 
poorest with a TSS of 0.388 and ROC of 0.745. Table 1, Figs. 2 and 3
provide a comparative account of the ROC and TSS values of eight SDMs, 
while Fig. 9 A presents the ROC and TSS values for the ensemble SDM.

All SDMs exhibit positive skewness, indicating right-skewed distri
butions where data is concentrated towards the lower values, with a few 
extreme higher values. The CTA has the highest skewness (1.186), 
implying the most pronounced asymmetry, while GLM has the lowest 
skewness (0.293), suggesting a distribution closer to symmetric. For 
kurtosis, all models are platykurtic, show negative values, signifying 
distributions with lighter tails and flatter peaks. The GBM (-1.206) and 
MAXENT (-1.189) have the most negative kurtosis, indicating very flat 
distributions with light tails. In contrast, CTA (-0.349) has the least 
negative kurtosis, meaning its distribution, while still flatter than 
normal, is closer to having normal-tailed behavior. Overall, these results 
suggest that all SDMs, while skewed to the right across all models, differ 
in their tail behavior and peak flatness. Fig. 4 presents a comparative 
account of habitat suitability for eight SDMs, and Fig. 5 shows the 
habitat suitability for the ensemble SDM. Fig. 6 provides a comparative 
account of the histograms for eight SDMs, while Fig. 7 presents the 
histogram for the ensemble SDM.

In this work, we found that among the bioclimatic variables, Bio 10 
consistently emerged as the most influential factor across multiple 
models, with notable contributions in GBM at 53.259 %, Ensemble 
model at 38.777 %, MAXENT at 38.095 % and CTA at 33.168 %. Other 
significant bioclimatic variables included Bio 12 and Bio 2, which also 
showed substantial contributions across several models like CTA, 
Ensemble, FDA, GAM, GLM and MAXENT. Models such as ANN and RF 
demonstrated a relatively even distribution of importance among the 
environmental variables considered. In both of these models, the 
contribution of all the bioclimatic variables range between 10 % and 
27 %. In contrast, anthropogenic factors such as Human Footprint and 
LULC exhibited lower contributions, across all models, with Human 
Footprint values dropping to 0.018 % in GLM and LULC values dropping 
to 0.095 % in GBM, indicating that while human impacts were present, 
they may not have been as immediate or influential as climatic factors in 
shaping bumblebee distribution. Table 2 and Fig. 8 provides a 
comparative account of variable contribution for eight SDMs, and 
Fig. 9b presents the variable contribution for the ensemble SDM.

Fig. 5. Habitat suitability of bumblebees for as per ensemble species distribu
tion model.
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6. Discussion

There is a growing need for research on insect diversity in a changing 
world, with SDMs serving as the primary tool to assess the impacts of 
climate change, land use changes, and other environmental shifts on 
species distributions, while also supporting conservation planning and 
selection. Since mountain ecosystems consist of unique environments 
for living creatures due to their powerful climate gradients, they are 

crucial for studying the effects of climate change on biodiversity. In 
mountain variation in abiotic factors especially changes in temperature 
and precipitation can influence diversity and activity pattern of animals 
(Singh et al., 2021). Conservation biologists prioritize critical biodi
versity areas to maximize conservation impact efficiently using limited 
resources (De et al., 2023a, De et al., 2023b). At present time, research 
on biodiversity has shifted from only documentation of biodiversity to 
finding the mechanisms that shape the biogeography, particularly in the 

Fig. 6. Comparative account of the histograms of eight species distribution models (SDMs) – Artificial Neural Network (ANN), Classification Tree Analysis (CTA), 
Flexible Discriminant Analysis (FDA), Generalized Additive Model (GAM), Generalized Boosting Model (GBM), Generalized Linear Model (GLM), Maximum Entropy 
Model (MAXENT), and Random Forest (RF). The bins for each histogram were calculated by following Freedman and Diaconis (1981). The vertical straight line 
indicates mean value and vertical dotted line indicates median value. The x-axis shows habitat suitability (0 = not suitable, 1 = most suitable) and the y-axis 
represents the number of pixels corresponding to each suitability score. The S represents skewness and K represents kurtosis score for each histogram.
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light of climate and habitat change. Numerous ecological models have 
been developed for diverse purposes, such as biodiversity conservation, 
protecting rare species, and assessing habitat suitability. In many ap
plications of SDMs, the predictive performance is important and most 
often, the users look for the algorithm that delivers most predictions 
(Hao et al., 2020). The predictive performance of SDM algorithms de
pends on situations and any single class of algorithms is not identified 
that can predict species distribution better than others consistently 
(Segurado and Araújo, 2004). It has been suggested that users may build 
an ‘ensemble’ prediction by combining predictions across different 
modeling methods to achieve better prediction, which is used in many 
recent SDM studies (Araujo and New, 2007; Hao et al., 2020). However, 
some study (Hao et al., 2020) found that there was no certain advantage 
to using ensembles over individual models.

In this work, the evaluation of eight SDMs for predicting Bumblebee 
habitats in high-altitude regions revealed important differences in 
model performance based on TSS and ROC values. The RF and Ensemble 
models performed the best, showing high agreement between predicted 
and observed distributions and strong discriminatory ability between 
presence and absence of species. In contrast, the GLM had poor results, 
making it unreliable for predicting Bumblebee distributions. The ANN 
also failed to deliver impressive outcomes, while the Generalized 
Boosted Model GBM offered a solid balance of accuracy and discrimi
nation. Models such as the GAM and FDA performed moderately well, 
making them suitable for applications where a moderate level of accu
racy was sufficient. Meanwhile, the MAXENT and CTA models showed 
intermediate results. Although they had decent ROC values, their lower 
TSS scores suggested they might not be as reliable in distinguishing 
between true positives and false positives.

The skewness and kurtosis values of the SDM raster data for 

Bumblebee distribution in high altitude provide critical insights into the 
behavior of each model’s output. The asymmetry of distribution is 
measured by skewness and positive skewness values indicate right- 
skewed distribution. Higher skewness values indicate presence of out
liers. In this work, we observed that the CTA had the highest skewness, 
indicating that its distribution was right-skewed, meaning it had a ten
dency to produce higher predicted values compared to other models. In 
contrast, GLM showed the lowest skewness, indicating a more sym
metrical distribution that could suggest more consistent predictions. 
Kurtosis assesses the ‘tailedness’ of a distribution, with negative values 
indicating a platykurtic distribution, where more probability mass is 
concentrated around the shoulders (one standard deviation from the 
mean) and less around the tails (extreme values), making such distri
butions less likely to generate outliers, whereas distributions with high 
kurtosis are more prone to producing outliers. In this work, we observed 
that the GBM and GAM displayed the lowest kurtosis values, implying 
flatter distributions with fewer outliers compared to models like CTA, 
which retained some extreme values (predicted species distribution 
values that were significantly above average compared to other pre
dictions made by the model). The RF model showed moderate skewness 
and relatively low kurtosis, suggesting that it captured variability 
effectively while remaining robust against outliers. The ANN also pre
sented a good option with higher skewness than RF but slightly lower 
kurtosis, indicating its capability to model complex relationships while 
managing extreme values reasonably well. Models such as GLM and 
MAXENT, with their lower skewness and kurtosis, were suitable for 
scenarios where extreme values were less prevalent, providing stable 
predictions overall. Finally, the ensemble approach offered a balanced 
method by combining multiple models to enhance predictive perfor
mance and reduce uncertainty, making it a very viable option. This 
result aligned with Tripathi et al. (2024), who advocated for ensemble 
approaches to study the effects of climate change on biodiversity in 
India’s biogeographic zones.

The RF model effectively captures nonlinear relationships and in
teractions among environmental variables without predefined func
tional forms, aligning well with complex species–environment dynamics 
(Hao et al., 2019). This flexibility enhances model fit and generalization 
across varying conditions. RF also performs well with imbalanced, 
limited, or presence-only datasets, offering reliable predictions where 
data are sparse (Valavi et al., 2021). By averaging multiple decision 
trees, RF minimizes variance and over fitting, producing stable results 
even with noisy inputs (Kaky et al., 2020). Species distributions often 
form clusters, reflecting inherent spatial structure and autocorrelation 
rather than random placement, and certain habitats naturally provide 
more suitable conditions than others. In this context, RF excels because 
it can process many environmental predictors without being troubled by 
collinearity and can easily capture nonlinear species–environment re
sponses (Chiaverini et al., 2023). Its accuracy remains high even when 
occurrence data are spatially clumped, and it reliably identifies influ
ential variables while maintaining temporal stability despite correlated 
climate inputs (Unnithan Kumar et al., 2021; Hanberry, 2024). At the 
broader methodological level, ecological systems show 

Fig. 7. Histogram of the ensemble species distribution model. The bin for the 
histogram was calculated by following Freedman and Diaconis (1981). The 
vertical straight line indicates mean value and vertical dotted line indicates 
median value. The x-axis shows habitat suitability (0 = not suitable, 1 = most 
suitable) and the y-axis represents the number of pixels corresponding to each 
suitability score. The S represents skewness and K represents kurtosis score.

Table 2 
Comparative account of the variable contribution (in percentage) of eight species distribution models (SDMs) – Artificial Neural Network (ANN), Classification Tree 
Analysis (CTA), Flexible Discriminant Analysis (FDA), Generalized Additive Model (GAM), Generalized Boosting Model (GBM), Generalized Linear Model (GLM), 
Maximum Entropy Model (MAXENT), Random Forest (RF) and Ensemble model.

Variables ANN CTA FDA GAM GBM GLM MAXENT RF Ensemble

Bio2 13.287 19.579 16.26 14.058 14.275 33.318 20.964 14.984 17.659
Bio7 11.487 10.626 5.714 5.222 3.599 24.17 7.305 10.082 4.285
Bio10 21.365 33.168 31.813 29.749 53.259 3.947 38.095 26.852 38.377
Bio12 17.164 15.023 28.602 31.273 16.438 5.196 19.777 15.753 23.88
Bio15 14.244 8.193 13.083 12.358 8.177 32.275 8.948 16.4 10.707
Bio19 16.299 10.337 2.897 3.254 3.688 0.636 2.919 10.645 3.384
Human footprint 3.118 2.092 0.841 1.861 0.471 0.018 1.006 3.262 0.913
LULC 3.036 0.982 0.791 2.225 0.095 0.44 0.986 2.021 0.395
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complementarity when different species use resources in distinct ways, 
boosting overall performance. Ensemble model mirrors this logic as it 
fuses multiple individually modest but complementary algorithms so 
that each compensates for the shortcomings of others which Civ
antos-Gómez et al. (2021) describe as a “smart mix of weak models”. Such 
ensemble integrates method-specific strengths, correct individual bia
ses, and yield higher predictive accuracy and robustness under novel 
environmental scenarios, while also allowing for explicit estimation of 
model uncertainty (Araujo and New, 2007). For these reasons, the RF 
and ensemble model generally outperform other models. Therefore, for 
effective modeling of Bumblebee distributions in high-altitude areas, 
prioritizing RF and Ensemble models are advisable due to their favorable 
statistical properties and robustness against outliers.

In most bumblebee species, hibernating queens emerge in early 
spring, coinciding with the blossoming of flowers and late summer, the 

queens have completed colony reproduction (Mola, 2021). During the 
summer, bumblebees increase their foraging and flying activity, as 
temperatures influence their flight capabilities (Martinet et al., 2021). 
Therefore, the temperature during the summer season plays a critical 
role in their behavior and survival. In this study, we found that Bio 10, 
representing the mean temperature of the warmest quarter, significantly 
influences bumblebee distribution in most SDMs. But, bumblebees are 
sensitive to heat stress (Goodwin and Wang, 2025), so rising 
warm-season temperatures may force upward shifts in their suitable 
habitats. Policymakers can use these insights to designate climate 
refugia, prioritize high-altitude zones for conservation, and support 
adaptive land-use policies that anticipate these range shifts. Incorpo
rating thermal suitability thresholds into agricultural zoning and con
servation corridor design can prevent habitat fragmentation and ensure 
pollination continuity under warming trends. Annual rainfall affects 

Fig. 8. Comparative account of variable contribution of eight species distribution models (SDMs) – Artificial Neural Network (ANN), Classification Tree Analysis 
(CTA), Flexible Discriminant Analysis (FDA), Generalized Additive Model (GAM), Generalized Boosting Model (GBM), Generalized Linear Model (GLM), Maximum 
Entropy Model (MAXENT), and Random Forest (RF).
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both soil and atmospheric moisture, which plays a critical role in the 
flowering phenology of nectar plants. Since bumblebees rely on the 
nectar of these plants for food, changes in flowering patterns due to 
variations in soil moisture directly impact their feeding resources. As a 
result, rainfall indirectly influences the distribution of bumblebees by 
affecting the timing and availability of the nectar plants they depend on. 
Also, since bumblebees nest in the ground (Sharma et al., 2024), they 
rely heavily on soil moisture for successful nesting. However, excessive 
rainfall can threaten their nests, leading to potential destruction. Since 
atmospheric humidity is proportional to precipitation and influences the 
flying and foraging activity of bumblebees (Sanderson et al., 2015), their 
distribution is consequently affected by rainfall. Thus, in this study, we 
found that Bio 12, which represents Annual Precipitation, plays a crucial 
role in most SDMs for bumblebees. Also, we would like to point out that 
because the Eastern Himalayas receive significantly more rainfall than 
the central and western regions (Nandargi and Dhar, 2011), due to 
variation in monsoon patterns, the impact of Bio 12 on Eastern Hima
layan bumblebee populations may be greater. Policymakers can there
fore promote water-efficient agro-ecological practices such as rainwater 
harvesting, and drought-resilient crop varieties especially in Trans Hi
malayan region to sustain floral resources and ecosystem services. In 
mountain ecosystems, the physiology and flowering phenology of an
giosperms are sensitive to frost events (Inouye, 2008), which can impact 
pollinator species like bumblebees. Frost formation is influenced by the 
difference between maximum daytime and minimum night-time tem
peratures. Bio 2, representing the mean diurnal temperature range, 
plays a crucial role in predicting frost events (Zheng et al., 2015; Zohner 
et al., 2020). Areas with a lower mean diurnal range tend to experience 
fewer frost events, creating more favorable conditions for bumblebee 
populations. Thus in this work we observed that in most of the SDMs the 
Bio 2 plays an important role. In hilly terrain diurnal microclimate is 
significantly affected by topography (John et al., 2024). High diurnal 
variation can stress bumblebee, leading to reduced foraging efficiency 
and altered pollination patterns (Chapman et al., 2022; He et al., 2025). 
Thus, from a policy perspective, maintaining microclimatic stability 
through vegetation cover, agro-forestry, and shade management be
comes crucial in Himalayas. Local agricultural and forestry programs 
can integrate such microclimate-buffering strategies to enhance polli
nator resilience and productivity.

In mountainous regions like the Himalayas, it is not feasible to 
sample every inch of the terrain or collect species data from every 
location. Sampling efforts are typically concentrated on certain areas 
and timeframes, which means the absence of a species in collected data 

does not necessarily confirm its absence in that region. The SDMs are 
thus built based on the available samples, and as a result, the physical 
characteristics of sampled regions are emphasized in these models. 
When certain environmental variables are prioritized over others in the 
modeling process, it can lead to a skewed understanding of the species- 
environment relationship. This bias occurs when the algorithm places 
excessive weight on certain variables, resulting in inaccurate predictions 
of species distributions by over-representing those influences while 
neglecting others of equal importance. However, when all relevant 
variables are treated equally, the resulting models are more likely to be 
transferable across different regions or conditions, increasing their 
predictive reliability. In our work, SDMs such as ANN and RF exhibited a 
more balanced distribution of importance across the environmental 
variables, supporting the need for equitable consideration of all 
contributing factors.

The Global Biodiversity Conservation Initiative and the United Na
tions’ SDGs have set targets for biodiversity conservation, particularly 
within 2030 and 2050. Among these, the ‘30 × 30 Initiative’ aims to 
designate 30 % of the world’s land and oceans as protected areas by 
2030 while promoting the achievement of other critical SDGs (De and 
Dwivedi, 2024a). Biodiversity supports the ecosystem balance and is 
vital for advancing progress toward the SDGs (De and Dwivedi, 2024b). 
The Himalayan region, supporting over 50 million inhabitants and 
providing ecosystem services that benefit more than a billion people, 
plays a vital role in achieving these objectives (Verma et al., 2021). 
Pollination, a key ecosystem service, is fundamental to Himalayan 
ecosystems, and bumblebees are indispensable pollinators in forested 
and agricultural landscapes of this region. The present study advances a 
sustainability-oriented understanding of Himalayan pollinator conser
vation by integrating SDMs with the SDGs. By evaluating eight SDM 
algorithms for Bombus species, our work identifies RF and ensemble 
approaches as the most reliable tools for predicting pollinator habitats. 
These models, driven primarily by warm-quarter temperature and 
annual precipitation, provide spatially explicit maps of habitat suit
ability that are essential for linking biodiversity science with sustainable 
development policy in fragile mountain ecosystems. These habitat 
suitability maps become operational decision-support layers for agri
cultural advisors (identifying fields at risk of pollination shortfall), 
protected-area planners (delineating refugia and connectivity corri
dors), and climate practitioners (targeting micro-refugia and restoration 
where climatic suitability persists). It was observed that bees have the 
potential to contribute to 15 of the 17 SDGs and at least 30 specific SDG 
targets (Patel et al., 2020). The animal pollination can substantially 

Fig. 9. (A) The receiver operating characteristic (ROC) and true skill statistic (TSS) values of ensemble species distribution model (B) Variable contribution for 
ensemble species distribution model.
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increases yield stability and reduces variability across years, a service 
that is especially valuable under climatic uncertainty. Thus, SDMs 
linking pollinator habitat and climate drivers equip managers and 
communities with the spatial foresight necessary to safeguard food se
curity, enhance the resilience of socio-ecological systems, and protect 
biodiversity (Fig. 10). Our work contributes directly to SDG 2 (Zero 
Hunger) by revealing where pollination services are most vulnerable, 
thereby supporting food security through targeted agro-ecological in
terventions, crop diversification, and habitat restoration. Reliable 
pollinator mapping enables planners to safeguard insect-dependent 
crops and sustain local livelihoods dependent on fruits, vegetables, 
and medicinal plants. For SDG 13 (Climate Action), the study demon
strates how pollinator SDMs can identify climate refugia and anticipate 
upslope range shifts under warming scenarios. This information un
derpins adaptive management strategies such as protecting 
high-elevation habitats, enhancing floral resources, and developing 

climate-resilient agricultural practices to mitigate the effects of climate 
change on pollination services. In relation to SDG 15 (Life on Land), the 
research supports biodiversity protection by highlighting priority zones 
for pollinator conservation that also preserve vital plant–pollinator 
networks in alpine meadows and forest systems. These efforts maintain 
ecological integrity and ensure the continued provision of ecosystem 
services. Through SDG 17 (Partnerships for the Goals), the study em
phasizes the role of collaborative monitoring, citizen science, and ca
pacity building in improving SDM inputs and promoting community 
engagement. The SDMs for insect pollinators can translate directly into 
spatially explicit guidance for conservation zoning, agro-ecological 
planning, and Himalayan regional policy by mapping present and 
future habitat suitability under land-use and climate scenarios. By SDM 
high suitability and climatically persistent areas can be identified for 
bumblebees and other pollinators and such areas can be prioritized as 
core conservation zones, ecological corridors, or climate refugia within 

Fig. 10. Schematic representation of how species distribution models of pollinators can help achieving sustainable development goals in the Himalayas.
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Himalayan protected area networks and community-managed forests. In 
high altitude agricultural landscapes, SDM outputs can be overlaid with 
cropping patterns and pollination-dependent crops allow planners to 
target agri-environment schemes, floral strips, and reduced pesticide 
zones where pollinator richness and ecosystem service potential are 
highest. The Himalayas, spanning India, Nepal, Bhutan, and China, host 
diverse pollinator communities distributed across steep altitudinal and 
climatic gradients. Because these species occur across multiple national 
boundaries, their conservation requires multi-scale governance frame
works that promote policy harmonization throughout the region. In this 
context, SDMs can serve as a unifying scientific tool, enabling joint 
monitoring systems, coordinated identification of connected conserva
tion areas, and shared climate-adaptation strategies. By aligning na
tional land-use plans with predicted pollinator movement pathways and 
phenological shifts, the Himalayan countries can collaboratively safe
guard pollination services essential for biodiversity, agriculture, and 
mountain livelihoods.

This study contributes uniquely to pollinator biogeography by 
showing that Himalayan bumblebee distributions are primarily shaped 
by warm-season temperature (Bio10) and annual precipitation (Bio12), 
which is consistence with global findings that climatic thresholds 
strongly control Bombus range dynamics (Kerr et al., 2015; Cameron and 
Sadd, 2020; Soroye et al., 2020). Unlike most SDM studies that model 
single species, this work integrates all Bombus species at the genus level, 
capturing the ecological coherence of high-elevation assemblages and 
offering a system-wide perspective particularly relevant for the world’s 
major alpine biodiversity hotspot. The comparison of eight algorithms, 
complemented by histogram-based skewness and kurtosis evaluation, 
provides a methodological advance seldom used in pollinator SDMs. By 
identifying RF and ensemble models as most robust, the study 
strengthens climate-adaptation planning for Himalayan pollinators.

The present study, while providing insights into Bombus habitat 
suitability across the Himalayas, is subject to some limitations that 
should be acknowledged when applying the results to conservation 
planning. The reliance on opportunistic field sampling and heteroge
neous literature-derived occurrences can introduce spatial sampling 
bias, as surveys were concentrated along accessible valleys, roadsides, 
and stream corridors, while vast high-altitude or remote habitats 
remained unsampled. Such sampling increases the likelihood that 
pseudo-absences, although randomly generated, may inadvertently fall 
in environmentally suitable but unsurveyed areas, potentially reducing 
model discrimination and inflating model sensitivity. Extracting co
ordinates from local descriptions can introduce positional uncertainty, 
which can misrepresent fine-scale climatic or land-use conditions in 
steep Himalayan terrain. The use of genus-level pooling may obscures 
species-specific niche differences and underestimate microhabitat 
specialization, especially for narrow-ranged taxa. Though the models 
provide a broad-scale foundation for identifying potential conservation 
priorities, their outputs should be interpreted with caution and com
plemented with targeted field validation, species-level surveys, and 
finer-resolution environmental data before informing site-level man
agement decisions or protected-area expansion.

7. Conclusion

The SDMs of pollinators offer a strategic approach to conserving 
biodiversity by identifying key habitats and anticipating environmental 
changes. By understanding where pollinators thrive, SDMs help guide 
habitat restoration and protection efforts, ensuring ecosystem resilience. 
These models support local livelihoods by identifying areas where 
pollination services can enhance crop yields, providing economic ben
efits to rural communities. Integrating climate forecasts, SDMs promote 
adaptive land-use planning, aligning conservation with sustainable 
agricultural practices. In this work we evaluated eight SDM algorithms, 
using genus Bombus as the taxonomic unit to analyze bumblebee dis
tribution in the Himalayas because genus-level models are also valuable 

for identifying critical habitats and understanding biodiversity patterns, 
especially in the context of climate change and habitat alteration. Seven 
algorithms (ANN, CTA, FDA, GAM, GBM, MAXENT, RF) performed well 
based on ROC and TSS scores but they vary in skewness and kurtosis. 
Among single algorithms, the RF stood out as the most effective model 
for predicting bumblebee distribution due to its robust statistical prop
erties. However, the ensemble approach proved superior overall in 
terms of accuracy and reliability. Given the variability in model per
formance, we urge researchers to evaluate all available models before 
selecting the most appropriate one based on study area, number of 
species, sample size, and spatial variables. Adopting a model without 
thorough evaluation may lead to incorrect predictions that could hinder 
conservation efforts. The best-practice standards that incorporate 
biodiversity theories, abiotic and biotic factors, trait-based approaches, 
meta-ecosystem frameworks, and field observations should be estab
lished and validated by the scientific community to ensure robust model 
evaluation, decision-making, and policy development in biodiversity 
conservation and achieving SDGs.
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