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Abstract

1. Land-use change and elevational gradients jointly influence biodiversity and species

distribution, yet their concurrent effects on arthropods in the Indian Himalayan

Region remain largely undocumented.

. Using spiders as a model taxon, this study assesses the parallel influences of elevation

(1500-4500-m at 500-m intervals) and land-use categories viz. forests, agricultural
lands and human-dominated regions on spider functional diversity in a North-Western

Himalayan landscape.

. The results show non-general patterns, with significant discrepancies in managed

habitats compared to forests, and a higher abundance of synanthropic species in

human-dominated regions.

. Directional shifts in functional traits are associated with elevational change, with

the transition between 3000 and 3500 m emerging as a critical functional and com-

munity threshold for Himalayan spider assemblages.

. The findings highlight functional variability under simultaneous natural and anthro-

pogenic pressures and raise concerns about habitat homogenization driven by
large-scale agro-production in climate-vulnerable Himalayan regions, potentially

shifting biodiversity towards new functional regimes.

KEYWORDS

INTRODUCTION

Land-use changes across mountain ecosystems of the global south
remain distinct and pervasive. Contemporary threats to these land-
scapes, especially in the Himalaya, emerge from anthropogenic activi-
ties, particularly agricultural expansion (Batar et al., 2017; Mondal &
Zhang, 2018; Nandy et al., 2015). The conversion of complex natural
landscapes to simplified ecosystems leads to changes in ecological
structures, often resulting in taxonomic and functional homogeniza-
tion (Cadotte & Tucker, 2017; Ibafiez-Alamo et al., 2017; Penjor
et al., 2022). This is evidenced by reduced species diversity and
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ecosystem functionality across different trophic scales (Grab
et al., 2019; Le Provost et al., 2020; Shahabuddin et al., 2021;
Thakur & Chawla, 2019). While responses of mammals and birds to
changing land-use and climate are well documented (e.g., Dar
et al., 2021; Girish & Srinivasan, 2020; Penjor et al., 2021; Srinivasan
et al., 2019), our understanding of how ectothermic fauna respond to
these changes remains currently limited (Mungee & Athreya, 2019,
2021). Changing climate and land-use regimes have been identified as
primary drivers of widespread loss of arthropod diversity globally
(Martinez-Nufez et al., 2024; Outhwaite et al., 2022; Raven &

Wagner, 2021). Research has also demonstrated spillover, that is.,

Insect Conserv Divers. 2026;1-16.

wileyonlinelibrary.com/journal/icad

© 2026 Royal Entomological Society. | 1


https://orcid.org/0000-0003-3269-0504
https://orcid.org/0000-0002-7037-7095
https://orcid.org/0000-0003-0093-6936
https://orcid.org/0000-0001-5757-6383
mailto:irina.dassarkar@gmail.com
http://wileyonlinelibrary.com/journal/icad

2 Dy
dispersal of species across habitat borders, of arthropods across vari-
ably managed habitats (Gallé et al, 2020; Madeira et al., 2016;
Opatovsky & Lubin, 2012). While this can potentially affect ecosys-
tem functioning and ecological interactions (Schneider et al., 2013;
Tscharntke et al., 2012), its extent of occurrence in Himalayan ecosys-
tems is scarcely understood.

Although diversity has traditionally been measured as taxonomic
diversity (TD), the concept alone fails to explain fluctuations in func-
tional  strategies that influence
(Swenson, 2014; Violle et al., 2014). Several research has indicated

stability in TD in response to shifting land-use patterns (Ernst

ecosystem  functioning

et al., 2006; Spaak et al., 2017) despite functional homogenization and
possible redundancy (Aguirre-Gutiérrez et al., 2017; Petchey
et al.,, 2007). This allows for functional diversity (FD) to serve as a
robust currency for quantifying community resilience to natural and
anthropogenic perturbations. Trait-based metrics such as Functional
Diversity Index (FDI) and Functional Redundancy (FunRed) provide
insights into uniqueness and composition of traits within communities
and can be used to inform community resilience (de Bello et al., 2007;
Laliberté & Legendre, 2010; Pillar et al., 2013; Villéger et al., 2008).

Arthropods represent an excellent group for taxonomic and trait-
based studies, including those assessing FD, owing to their wide distri-
bution throughout the terrestrial biosphere (Stork, 2018). Within the
hyperdiverse group, spiders (Arthropoda, Arachnida, Araneae), can
provide powerful tests of multifaceted diversity patterns owing to
their high diversity, integral role within terrestrial trophic webs and
demonstrated ecosystem services (Cardoso et al., 2011; Fernandez
et al., 2018; Macias-Hernandez et al., 2020; Pekar et al., 2021). This is
furthered by their sensitivity to small changes in habitat structures,
including vegetation complexity, litter depth and microclimate charac-
teristics (e.g., Cardoso et al., 2010). Furthermore, several studies have
corroborated that different land-use and management practices intro-
duce variable environmental and species compositions, consequently
influencing functional variations (Gallé et al, 2018; Mazzia
et al., 2015; Pinto et al., 2021; Potapov et al., 2020). Similar implica-
tions have also been reported from India, albeit along gradients of
habitat disturbances (De et al., 2023; Sharma et al., 2024). Although
research assessing functional variabilities of Indian Himalayan fauna
are limited, some have reported a decline in functional attributes with
elevational increase (Chakravarty et al., 2021), while others have
reported functional randomness (Mungee & Athreya, 2019). However,
investigations into functional variations in Himalayan spider communi-
ties remain hitherto unknown, across both elevation and land-use gra-
dients (Sarkar et al., 2023).

The current study addresses a significant knowledge gap by con-
ducting the first assessment of functional variations in spider assem-
blages in the North-Western Himalaya. Particularly, we compare FD
variations across three land-use classes (forests [FR], agricultural lands
[AG] and human dominated regions [HD]) along a common elevational
gradient of 1500-4500 m. The primary objective is to understand how
functional properties vary across different land management strate-
gies when a constant elevational gradient is maintained. The study

provides insights into how Himalayan spider communities respond to

Royal
Entomological
Society

SARKAR ET AL.

simultaneous effects of elevational changes and land management
practices. The overarching goal is to provide evidence for the influ-
ence of land-use variabilities (and management) in shaping spider
FD. Understanding these dynamics is vital for informed conservation
strategies that need to consider both elevation and land management
practices as factors in predicting future implications of rapidly chang-
ing environments in the Indian Himalayas.

MATERIALS AND METHODS
Study area and sampling design

The study was conducted in the Himalayan State of Himachal Pradesh
(HP), India. Covering an area of 55,673 sq. km., HP accounts for
1.69% of the national geographic area, 10.54% of the Indian Himala-
yan landmass and 17% of the North-Western Himalayan area
(FSI, 2019; Sharma & Sidhu, 2016). The geomorphological relief fea-
tures of the State comprise of massive peaks, hills, valleys, spurs and
mountains, with an elevational gradient of 248 m-6500 m (Upgupta
et al., 2015). The state harbours one of the most diverse bioreservoirs
in the world, with eight classified forest groups, further subdivided
into 39 forest types. Broadly, coniferous and broad-leaved forests are
distributed along the elevational gradient of the state with the lowest
and highest zones are represented by dry scrub forests and alpine
pastures, respectively, with distinct bands of mixed deciduous forests.

Field work was conducted across an elevational gradient of
1500-4500 m in two districts of HP, Kullu and Lahaul-Spiti
(LS) (Figure 1), encompassing two protected areas and their respective
buffer zones: Great Himalayan National Park Conservation Area, Kullu
(GHNPCA: 1500 m-2500 m) (hereafter represented as E1500-
E2500) and Kibber Wildlife Sanctuary, Spiti (E4000-E4500), and two
Reserve Forests (RFs), Lahaul (E3000-E3500). GHNPCA, situated at
the convergence of the Indomalayan and the Palearctic realms, sup-
ports 25 forest types, including temperate broadleaved, conifer, scrub,
sub-alpine and alpine vegetation (Singh & Rawat, 1999). It serves as a
core conservation area within the North-Western Himalayan land-
scape and is recognized as a UNESCO World Heritage Site for its bio-
diversity significance (UNESCO, 2014). Here you can add some line
regarding selecting the two study area depicting the fact that at
GHNPCA other land-use areas are not there.

Lahaul-Spiti, constitutes the largest district in HP, situated
between the mountain chains of Pir Panjal of the Greater and Trans
Himalaya (Aswal & Mehrotra, 1994; Joshi et al., 2020). Lahaul consists
of glacial valleys with high mountain ranges, while Spiti is a compara-
tively drier valley located in the rain-shadow area of the Great Himala-
yan range, and includes the Kibber Wildlife Sanctuary (WLS), an
integral part of the Cold Desert Biosphere Reserve (CDBR). This
extremely arid and high-altitude terrain, with its challenging environ-
mental conditions, shelters a diverse array of unique and endemic spe-
cies (Kala, 2000, 2005; Sharma & Samant, 2019).

Systematic elevational sampling was conducted in intervals of

500 + 100 m, resulting in seven sampling bands. Within each
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FIGURE 1 Digital Elevation Map (DEM) of study area detailing sampling locations across the study landscapes within each elevational site
and independent land-use class. Map insets from bottom to top: sampling within Kullu (E1500-E2500), sampling within Lahaul (E3000-E3500),

sampling within Spiti (E4000-E4500).

TABLE 1 Elevational and locality details of sampling sites assessed for the study across independent land-use classes.

Sampled Site: Agricultural

Sampled Site: Human-dominated

Elevation Sampled Site: Forests (FR) Lands (AG) Regions (HD)

E1500 Gushaini, GHNPCA Eco-zone (Oak and Pine) Nagni, GHNPCA Eco-zone (Apple Gushaini, GHNPCA Eco-zone (Residential
Orchard) built-up area)

E2000 Rolla Camp, GHNPCA (Pine and Cedar) Jamala, GHNPCA Eco-zone (Apple Darakhali, GHNPCA Eco-zone (Residential
Orchard) built-up area)

E2500 Kholipoi Nursery, GHNPCA (Silver Fir and Horse Daran, GHNPCA Eco-zone (Apple Daran, GHNPCA Eco-zone (Residential built-

Chestnut) Orchard) up area)

E3000 Dorni Reserve Forest (Himalaya Birch) Lower Keylong (Vegetable crop Lower Keylong, Lahaul (Residential built-up
field) area)

E3500 Pangrang Reserve Forest (Pine) Kwaring (Vegetable crop field) Kwaring, Lahaul (Residential built-up area)

E4000 Kibber WLS (Shrubs) Chicham (Vegetable crop field) Chicham, Spiti (Residential built-up area)

E4500 Kibber WLS (Shrubs) Komic (Vegetable crop field) Komic, Spiti (Residential built-up area)

Note: Elevations E1500-E2500 represents Kullu landscape, E3000-E4500 represents Lahaul-Spiti landscape.

elevational zone, we accounted for three broad land-use

(LU) categories, totalling to 21 sampling sites (Table 1): Forests
(FR) represented protected areas that hosted natural vegetation with
minimal interference and no anthropogenic management; AG included
fruit/crop fields that

were agro-chemically managed for

agro-production; HD included the infrastructural habitation zones for
local residence. Quadrat-based sampling was adopted, with 25 quad-
rats, each measuring 1 m*1 m randomly sampled within each site
resulting in 525 sampling points. Each quadrat was sampled for
20 min by two individuals simultaneously and independently, to
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TABLE 2 Overview of functional traits used for assessing
functional diversity and their validity as a justifiable indicator of
species fitness.

SARKAR ET AL.

Categorization of values

Trait Ecological Role with their ecological roles
Feeding Feeding guild influence 1. Space web builders
guild access to prey and 2. Orb web builder
microhabitat resources, 3. Sheet web builders
shaping species’ foraging 4. Sensing web builders
strategies and resource 5. Ambush hunters
sharing, which in turn 6. Ground hunters
affects growth, 7. Other hunters
reproduction and survival 8. Specialists
(Cardoso et al., 2011).
Circadian Body size along with 1. Diurnal
Activity circadian activity dictates 2. Nocturnal
partitioning of resources, 3. Cathemeral
range of prey and hunting
affinities (Cardoso
et al., 2011).
Prey Diet breadth of species 1. Euryphagous
range dictates trophic 2. Stenophagous
specialization and
adaptation to new trophic
zones by driving
physiological efficiency,
competition, coevolutionary
interactions and use of
enemy-free space (Cardoso
et al,, 2011; Pekar
et al., 2012).
Ballooning  Dictates dispersal abilities, 1. Capable of efficient
since dispersal by ballooning ballooning
allows spiders to rapidly 2. Incapable of efficient
colonize remote habitats ballooning/ballooning
across large distance restricted over growth
(Cardoso et al., 2011; phase
Langlands et al., 2011).
Hunting Vertical stratification of 1. Ground strata
Strata hunting strategies dictates 2. Vegetational strata

feeding guilds and strategies
along with prey range and
resource utilization (Cardoso
et al., 2011).

3. Both ground and
vegetation

ensure swift detection and reduce sample loss, particularly for fast-
moving species such as ground-dwellers and active hunters, contribut-
ing to a total sampling effort of 175 h per observer, resulting in
350 total sampling hours across all sites. A consistent distance of 3-
5 m between each quadrat was maintained to ensure spatial indepen-
dency. Field sampling was carried out from March to September,
2021.

Spider sampling followed established protocols (Coddington
et al., 1996) and involved a combination of active sampling methods
such as aerial and ground hand collection along with bush beating.
Due to logistical and financial constraints, nocturnal sampling was not
conducted, and sampling was standardized across the elevational and

land-use gradient to ensure comparability. The methods aimed to

sample spiders across different microhabitat and guild preferences.
Collected specimens were preserved in 70% ethanol and identified
under a Carton DSZ-45 T stereo-microscope, using various keys, cata-
logues and established literature sources from the World Spider
Catalog (WSC, 2023). Species identification was further confirmed
through dissection of copulatory organs for taxonomic verification.
Sub-adult specimens were identified as morphospecies and later
assigned genus-level classification aligning with key identifiable fea-
tures. Juvenile specimens were excluded from the dataset due to

ambiguity of their identification.

Functional traits

Species traits were selected to assess functional variations in species
communities as abundance-based data at both overall elevational and
LU specific scales. While a combination of morphological, behavioural
and life history traits best represent sensitivity to stressors and eco-
system processes (Moretti et al., 2017), we could not determine mor-
phological variations due to a significant proportion of sub-adult
specimens. Three ecological (circadian activity, hunting strata, balloon-
ing) and two predational traits (hunting guild and prey range) were
selected that directly relate to feeding and dispersal success, conse-
quently dictating overall ecological roles and influence resource parti-
tioning within communities (Table 2). These traits are established
predictors of ecological strategies and filtering in ecosystems and
values of each were derived from literature (Cardoso et al., 2011; de
la Delgado Flor et al., 2020; Gobbi et al., 2017; Lowe et al., 2020;
Schirmel et al., 2012).

Data analysis

Taxonomic species diversity was assessed for each elevational-LU
site, measured as observed richness and extrapolated using non-
parametric estimators (Jacknife, ACE and Chao) (Chao & Chiu, 2016).
A rarefaction/extrapolation (R/E) approach was used to estimate both
observed and estimated richness, along with sampling completeness
through Hill numbers, accounting for both species’ abundance and
evenness, using the function iNEXT() within package iNEXT (Hsieh
et al., 2016). Species richness estimates can be influenced by sample
size and effort. To account for this, we applied a R/E approach, which
allows for standardized comparisons of observed and estimated rich-
ness while minimizing data loss (Chao & Jost, 2012; Colwell
et al., 2012; Hsieh et al., 2016). Sample completeness was assessed
through sample coverage, representing the proportion of total individ-
uals belonging to detected species (Hsieh et al., 2016).

Quantification of various FD metrics was achieved through a
distance-based multidimensional framework, specifically designed to
assess FD using a Gower dissimilarity matrix derived from trait data
(Laliberté et al., 2014). Each metric was assessed at two scales, overall
elevational and elevational-LU gradients. The former combined data

from all sampled sites without accounting for LU differences. The
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latter assessed each LU as an independent dataset (along a common
elevational gradient) to quantify FD. Functional Richness (FRic) quan-
tifies the variety of functional traits present within a community,
higher values indicating more diverse capacities to perform ecological
roles. Functional Evenness (FEve) measures the evenness of trait dis-
tribution within a community, representing the balance of ecological
functions. Functional Divergence (FDiv) evaluates the degree of (dis)
similarity among species in terms of the traits they possess. Functional
Dispersion (FDis) reflects the average trait dissimilarity among co-
occurring species (Laliberté & Legendre, 2010), while Rao’s Quadratic
Entropy (RaoQ) accounts for both species’ abundances and trait dif-
ferences, thereby providing a measure of diversity and community
trait heterogeneity (Rao, 1982; Swenson, 2014). FunRed quantifies
functional similarities among species within a community and can be
used to inform community resilience (de Bello et al, 2007; Pillar
et al., 2013). FunRed was calculated using the function rao.diversity()
in package SYNCSA (Debastiani & Pillar, 2012), while all other func-
tional metrics were computed using function dbFD() within package
FD (Laliberté et al., 2014). All FD metrics were regressed against ele-
vational turnovers for each LU class to assess independent elevational
relationships and graphically represented.

We conducted Tukey’s post hoc tests within each land-use type
to identify significant differences in FD metrics (FRic, FEve, FDiv,
FDis, RaoQ and FunRed) across immediately adjacent elevation bands
(E1500-E2000, E2000-E2500 and so on) to identify key transitional
zones of changing species adaptabilities. This approach assessed
whether specific elevation bands exhibited distinct shifts in functional
structuring while minimizing the confounding effects of comparing
extreme elevations (e.g., E1500-E4000).

While Mason et al. (2005) and Villéger et al. (2008) developed
several indices to quantify FD, others (Garnier et al., 2004; Lavorel
et al., 2008; Ricotta & Moretti, 2010) argued that the range and distri-
bution of individual trait values offer more suitable insights into asses-
sing relationships between community structure and ecological
dynamics. Thus, to assess the influence of elevation on individual
traits characteristics, we calculated the Community Weighted Means
(CWM) of each quantified trait at each site using functcomp() function
within package FD (Laliberté et al., 2014). This metric calculates the
average value of a particular trait within each specific elevational-LU
unit, considering the relative abundance of each trait value within that
unit (Bricca et al., 2019; Garnier et al., 2004). This essentially indicates
how trait properties shift in their independent characters to accom-
modate for changing habitat gradients. Additionally, to account for
hierarchical sampling and uneven temporal coverage, we additionally
fitted generalized linear mixed-effects models (GLMMs) with site
identity (defined as elevation band and land-use type) and sampling
month included as random intercepts, while elevation was treated as
a continuous fixed effect. All analysis was performed in R version
4.2.1 (R Core Team, 2013) using packages SYNCSA (Debastiani &
Pillar, 2012), vegan (Oksanen, 2010), FD (Laliberté et al., 2014), BAT
(Cardoso et al., 2015), iNEXT (Hsieh et al., 2016), ggplot2 (Wickham
et al., 2016), gimmTMB (Magnusson et al., 2017) and cowplot (Wilke
et al., 2019).

.| s
RESULTS

Taxonomic diversity

The study recorded a total of 2936 adult and sub-adult individuals
representing 126 species across 65 genera and 26 families from the
study area (Supplementary Annexure 1). Along independent land-use
(LU) classes, we recorded 85 species across 49 genera from 21 families
from FR, 43 species across 29 genera and 15 families from AG and
73 species across 45 genera and 22 families from HD (Table 3). Taxo-
nomic diversity, measured as observed species richness and richness
estimators, generally declined with increasing elevation although the
magnitude differed across LU categories. With a few exceptions
within LUs (e.g., E3500-FR and E1500-AG), sample-size and
coverage-based rarefaction/extrapolation (R/E) and sample complete-
ness curves indicated adequate (>95%) sampling efforts and accurate
diversity representation from resident species pool across each LU
(Figure 2a-1). Additionally, GLMMs accounting for site identity and
sampling month indicated no significant effect of elevation on total
spider abundance (f = —0.06 + 0.05 SE, z= —1.27, p = 0.20), sug-
gesting that observed FD patterns are unlikely to be driven primarily

by changes in overall abundance (Supplementary Annexure 2).

Variabilities in FD

We observed a general trend of decreasing FD across both overall
elevational and LU gradients, albeit with idiosyncrasies across the lat-
ter (Figure 3a-f; Table 4). Significant declines in all FD metrics were
observed across overall, FR and HD scales with increasing elevation.
Contrastingly, AG sites across the gradient exhibited minimal varia-
tions with no statistical significance. We also observed considerable
convergence of trends between forested areas and the overall pat-
terns, particularly evident for FEve, FDis and RaoQ, suggesting a
stronger influence of forest habitats in shaping elevational-FD pat-
terns. Additionally, barring FunRed, all metrics across LUs approached
near-zero values at the highest elevational sites (E4000 and E4500).

Tukey'’s post hoc tests revealed significant shifts in FD metrics
across multiple elevational transitions, with notable differences across
LUs (Supplementary Annexure 3). Within FR sites, all functional met-
rics except FRic exhibited significant differences at E3000-E3500.
Additionally, E2000-E2500 showed significant differences in FDiv
and FunRed, while E2500-E3000 exhibited significant variation in
FDis, RaoQ and FunRed. At the highest elevation band, 4000-
4500 m, both FDis and FunRed showed significant differences.

In AG sites, the E2500-E3000 transition exhibited significant dif-
ferences in FEve, FDis and RaoQ, while E3000-E3500m showed sig-
nificant variation in RaoQ alone. Within HD sites, E2000-E2500
exhibited significant differences in FEve, whereas E2500-E3000
showed significant variation across all FD metrics barring FunRed. The
E3000-E3500 transition exhibited significant differences in FEve and
FDiv, while E3500-E4000 and E4000-E4500 both exhibited signifi-
cant shifts in FunRed.
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TABLE 3 Elevational variation in taxonomic alpha diversity (observed and estimated species richness) across forest, agricultural and human-

dominated land-use types.

Land-Use Sites Observed Species Chao Ace Jack1l Jack2
Forests (FR) E1500FR 26 44.82 47.52 39.44 4791
E2000FR 37 49.00 47.99 514 57.27
E2500FR 15 19.00 19.78 19.8 21.76
E3000FR 13 33.16 22.53 19.72 26.16
E3500FR 20.00 13.71 12.8 16.52
E4000FR 11.84 8.41 11.84 13.76
E4500FR 3 3.00 3.00 3 212
Agricultural lands (AG) E1500AG 17 33 28.24 26.6 33.16
E2000AG 11 13.56 16.44 14.84 15.88
E2500AG 4 4.48 4.69 4.96 5.00
E3000AG 9 21 20.64 13.8 17.52
E3500AG 7 8.92 10.66 8.92 9.88
E4000AG 7 14.68 9.58 10.84 13.64
E4500AG 5 6.92 8.22 6.92 7.88
Human-dominated regions (HD) E1500HD 39 45 46.95 48.60 3.34
E2000HD 29 31 31.71 33.80 291
E2500HD 29 35 36.45 38.60 3.34
E3000HD 15 19 19.84 19.80 215
E3500HD 4 4 4.00 4.00 0.00
E4000HD 14.68 9.57 10.84 2.37
E4500HD 4 4 4.00 4.00 0.00

Variabilities in Community Weighted Means

CWM highlighted broad, directional patterns in dominant functional
traits across elevations and LU types (Figure 4a-e). CWM of prey
ranges (Figure 4a) and dispersal capabilities (Figure 4b) did not exhibit
drastic fluctuations across elevations and LUs. However, certain ele-
vational sites hosted specialist species such as Tropizodium sp. and
Trachelas spp. (e.g., E3500). The discrepancy in dispersal ability pat-
terns coincides with the presence of Coelotinae species at E3000-
E3500 that have limited ballooning tendencies in their adult stage
(Quasin et al., 2017). Variation in circadian patterns also highlighted
the predominance of cathemeral species across all LU and elevational
sites, particularly within FR and AG sites (Figure 4c). However, lower
elevational HD sites also hosted considerable abundance of nocturnal
species, particularly Tamgrinia palpator and Makdiops montigenus.
Variations in hunting strata and feeding guilds showed prominent
patterns across elevational gradients, influenced by LU types
(Figure 4d-e). Low to upper-intermediate sites (E1500-E3500) where
foliage was abundant, mixed communities of both ground and vegeta-
tion hunters were observed for overall, FR and HD communities. We
observed an increase in ambush hunters at E3500 within FR sites,
while analogous HD sites retained orb-web building guilds, abun-
dantly hosting Araneus marmoreus and Neoscona xishanensis. However,
AG communities deviated notably from this pattern. Ground hunters

were more prevalent in lower elevational orchards (E2000-E25000),

transitioning to ambush hunting and web-building groups at E3000-
E3500, where agro-production was characterized by vegetable crops.
Furthermore, despite similarities in foliage and landscape composition
at E4000 and E4500, we observed notable differences in guild com-
positions. The former hosted an abundance of opportunistic sensing
web-weavers (Titanoeca asimilis), especially within FR and HD sites.
Contrastingly, AG sites at the same elevation were dominated by
Cambalida sp. nov.1., an obligate ground-hunter. At the highest eleva-
tion (E4500), ground hunters were commonly prevalent across all LUs.

DISCUSSION

The current study addresses a significant knowledge gap by providing
one of the first insights into functional variations of North-Western
Himalayan spider communities across different land-use (LU) types
over a wide elevational gradient. Our findings underscore how differ-
ences in land management influence functional properties of spiders
within closely spaced regions, at comparable elevational turnovers. It
also highlights unprecedented influences of long-term habitat alter-
ations such as agriculture and infrastructural built-up on natural pat-
terns. The findings emphasize the need for investigating functional
dynamics in ground arthropod assemblages in mountain ecosystems
to assess impacts of climate, environmental and anthropogenic
perturbations.
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Our findings support significant yet variable influences levied by
LU modifications on spider FD. Although species richness declined
with elevation across LU types, taxonomic patterns did not fully mir-
ror changes in FD, indicating that functional restructuring reflects
shifts in trait composition rather than simple species loss. Responses
in most metrics along overall, FR and HD elevational turnovers sup-
ports distinct directional shifts in functional properties within these
communities, emphasizing trait uniqueness within independent sites
in an otherwise contiguous gradient. Observed declines in FRic and
RaoQ with elevational gains indicate more diverse trait associations in

heterogenous ecosystems that remains consistent with previous

findings (Bovo et al., 2018; Ibarra & Martin, 2015; Liu et al., 2022;
Thakur & Chawla, 2019; Vollstadt et al., 2017). Additionally, the
higher trait richness observed in relatively disturbed sites
(HD) underpins the presence of more diverse and specialised roles ful-
filled by synanthropic species co-habiting anthropogenic spaces. This
pattern aligns with findings by Leroy et al. (2014) and Kaltsas et al.
(2019), supporting the notion of comparatively higher FD in sites of
heightened disturbances resultant from colonization by more resilient
species with distinct functional characters. Further, the stronger asso-
ciation of trait diversity (RaoQ) within such disturbed sites also sup-

ports the intermediate disturbance hypothesis, suggesting a trade-off
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between species’ competitive ability and tolerance to disturbance,
averting dominant species from excluding others with more adaptable
traits (Sasaki et al., 2009). Additionally, the reduction in FDis within
HD communities along elevation supports previous findings of anthro-
pogenic stressors leading to trait homogenization (Ao et al., 2022;
2017; de Castro et al, 2018; Laliberté &
Legendre, 2010). The infrastructural consistency of human settle-

Barnum et al,

ments across the landscapes reinforces modified habitat similarities
conducive for early and sustained colonization by synanthropes and
dominant species from proximate natural habitats. Similarly, FDis in
AG sites remains largely consistent across elevation, showing no sig-
nificant variation, suggesting potential trait homogenization, consis-
tent with the effects of agricultural intensification (Gamez-Virués
et al., 2015). While several studies have negated elevational associa-
tions of FEve and/or Functional Divergence (FDiv) within natural sys-
tems (Apaza-Quevedo et al, 2015; Butterfield & Suding, 2013;
Thakur & Chawla, 2019), our study establishes their strong relation-
ships with changing elevations. Significant declines in FEve from lower

to higher elevations may reflect shifts in resource use dynamics, either
due to reductions in resource availability or changes in community
functional structuring. This aligns with observations from Eastern
Qinghai-Tibetan plateau (Liu et al., 2022). This may indicate an even
use of available niches with low probability of invaders being estab-
lished to disrupt overall functioning (Mason et al., 2005). Similarly,
patterns of FDiv and FDis hint towards lowered abundance of func-
tionally specialist species at higher elevations. This implies that
functionally similar species are more likely to co-exist at higher eleva-
tional sites, possibly due to reduced competition, limited availability of
resources and harsher climatic conditions. Moreover, as FDiv captures
the interplay between biotic and abiotic factors, it becomes evident
that the balance between competitive interactions and environmental
filtering experiences significant shifts across higher elevational
gradients.

Declining FunRed trends with increasing elevation in overall, FR
and HD communities support the notion that as elevation increases,

the breadth of ecological roles performed by species become
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TABLE 4 Linear regression analysis of functional diversity metrics across elevations and land-use types.

Land-Use Functional diversity metric Multiple R? F-Stat p

Combined Elevational Gradient FRic 0.18 1121 <0.001
FEve 0.18 107.4 <0.001
FDiv 0.26 178.2 <0.001
FDis 0.18 113.7 <0.001
RaoQ 0.12 68.2 <0.001
FunRed 0.09 53.02 <0.001

Forests (FR) FRic 0.17 34.82 <0.001
FEve 0.17 354 <0.001
FDiv 0.32 78.62 <0.001
FDis 0.11 21.09 <0.001
RaoQ 0.02 4.25 0.041
FunRed 0.24 52.84 <0.001

Agricultural lands (AG) FRic 0.01 1.36 0.245
FEve 0.00 0.69 0.408
FDiv 0.02 2.63 0.107
FDis 0.02 291 0.090
RaoQ 0.01 1.73 0.191
FunRed 0.00 0.68 0.412

Human-dominated regions (HD) FRic 0.44 131.2 <0.001
FEve 0.53 187.5 <0.001
FDiv 0.64 294.2 <0.001
FDis 0.61 261.2 <0.001
RaoQ 0.55 208.6 <0.001
FunRed 0.25 56.07 <0.001

Note: Bold figures signify statistically significant values.

Abbreviations: FDis, Functional Dispersion; FDiv, Functional Divergence; FEve, Functional Evenness; FRic, Functional Richness; FunRed, Functional

Redundancy; RaoQ, Rao’s Quadratic Entropy.

narrower and specialised, with minimal overlap (Monge-Gonzalez
et al., 2021). Although this may be speculative under the assumption
that only the quantified traits play absolute roles in ecosystem func-
tioning, general consensus dictates that communities with low
FunRed could have dramatic consequences from loss of few species
(Flynn et al., 2009). Consequently, it also foreshadows a potential loss
in overall functioning in a scenario of species losses, due to deliberate
or stochastic factors, as there are no redundant species to compen-
sate for functions (Bruno et al., 2016; Mori et al., 2013, 2015). This
further strengthens the vulnerability of temperate high-altitude com-
munities to external stressors, rendering them vulnerable to loss of
ecosystem functions and functional collapse (Martin et al., 2021; Pigot
et al., 2016). These findings also align with the hypothesis proposed
by Cornwell and Ackerly (2009), which suggests that regions
experiencing strong environmental filtering tend to exhibit lower FD
compared to regions with weaker filtering effects and communities
characterized by stronger competitive interactions (Chakravarty
et al., 2021; Monge-Gonzalez et al., 2021). This may be derivative of
select traits acting as a determinant of species’ coping capabilities

under stressful conditions, particularly those found at higher

elevations (Hoiss et al., 2012). Importantly, accounting for site-level
and seasonal heterogeneity did not reveal a significant elevational
trend in overall spider abundance, indicating that the documented
shifts in FD may reflect community reorganisation rather than simple
abundance gradients.

Corroborating prior Himalayan research (Chakravarty et al., 2021;
Thakur & Chawla, 2019), our study highlights the transition between
E3000-E3500 within FR as an ecologically crucial site of changing spe-
cies adaptabilities and niche partitioning. Coinciding with the ecotonal
treeline in HP (Singh et al, 2021), this transitionary zone witnessed
strong shifts in trait properties, potentially highlighting functional under-
dispersion and specialization. These changes align with documented veg-
etation transitions beyond this site, which may also contribute to the
observed significant uptick in ground-dwelling spiders. This is unsurpris-
ing given that the onset of harsher environmental conditions at higher
altitudes allows environmental filtering to be the deterministic driver of
community assemblages, especially for ectotherms (Zhao et al., 2023).
The clear convergence of shifting treeline zones and functional proper-
ties of spider assemblages can be integrated for better informed monitor-

ing of climatic responses in ectothermic communities.
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Agricultural intensification has been widely linked to disruptions
in arthropod FD (Edwards et al, 2014; Jonason et al, 2017;
Tscharntke et al., 2008), and the same remains corroborated by our
study. The non-significance of all metrics with elevational gains
(against other LUs) indicates higher functional specialization in agro-
elevational communities (Davies et al., 2020; Jonason et al., 2017;
Monge et al., 2022). While such alterations have previously been
directly linked to ecological inefficiency (Clavel et al., 2011; Frishkoff
et al., 2014), the observed stability in FD metrics across elevation may
highlight fulfilment of roles by specific species, conferring functional
stability. One potential explanation for this stability may be the pres-
ence of FunRed among species. This means that despite changes in
species compositions and/or a decline in species richness with
increasing elevation, the key ecological functions are maintained
across the gradient. However, the stark deviations of agro-
communities from overall and natural trends also parallels previous
findings (Grab et al, 2019; Ibafez-Alamo et al, 2017; Penjor
et al., 2022). While this may be attributed to systematic habitat
homogenization for sustaining commercial produce, it results at the

cost of stark reduction of functional groups (e.g., web-builders in
lower elevational classes). This raises concerns regarding functional
resilience, especially under the ongoing crop/fruit production adversi-
ties driven by climate crisis in HP (Gautam et al, 2014; Sahu
et al., 2020; Sen et al., 2015; Singh et al., 2016). Lowered resilience in
these sites, coupled with eroding taxonomic and functional properties
may cause severe deficiencies in ecosystem functioning if not appro-
priately and sustainably mitigated.

Our findings also support the generalist and voracious feeding
capabilities exhibited by spiders, while maintaining variable hunting
strategies and wide dispersal abilities (Bell et al., 2005; Cardoso
et al,, 2011; Michalko et al., 2019; Nyffeler & Birkhofer, 2017). Circa-
dian activity is inherently linked to the natural day-night rhythm,
which is influenced by environmental factors like light and humidity,
shaping circadian rhythms (Krumpalova & Tuf, 2013). While habitat
specialization in spiders plays a deterministic role, Schoener (1974)
suggests that these rhythms could have an even greater impact since
temporal stratification has been proposed as a mechanism to reduce

competition among congeners (Breymeyer, 1966; tuczak, 1959). This
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holds true even for high-altitude communities, where habitat condi-
tions, food availability and reproductive trade-offs play significant
roles in driving circadian activities under extreme environmental con-
ditions (Mann et al., 1980). While our study does not definitively
conclude acute activity partitioning, certain findings remain nuanced.
FR and AG communities across the elevational gradient seem to be
comprised of predominantly cathemeral species, although the typical
activity within HD communities, especially lower sites, tend to include
a higher proportion of nocturnal species. However, it remains difficult
to derive conclusions from these patterns since species in the former
classes are known to exhibit inter-specific variabilities in activity peaks
(Flatz, 1987; Krumpalova & Tuf, 2013; Nyffeler & Benz, 1988).

Variabilities in hunting strata and guild variations remain closely
associated with floral complexity within sites, a pattern widely estab-
lished for spider communities (Barton et al., 2017; Carvalho
et al, 2011; Chatzaki et al., 2005; Gallé et al., 2018; Hore &
Uniyal, 2008; Lafage et al., 2019; Malumbres-Olarte et al., 2013). In
habitats with greater vegetation complexity, both ground-dwelling
and foliage-dwelling species co-occur, likely benefiting from increased
structural diversity and resource availability. However, agricultural
communities deviate significantly from this pattern, exhibiting a shift
towards predominantly ground-dwelling species. While this departure
from the expected trend is pronounced, it aligns with established
research on habitat simplification and its effects on arthropod com-
munities (Corcuera et al., 2010; Ibarra-Nufez, 2014). Notably, studies
documenting spider diversities from temperate apple orchards in the
Western Himalaya have reported a mix of web-builders and ground
dwellers (Khan, 2009, 2011, 2012). However, our study reports an
over-abundance of ground obligates, particularly Lycosidae species,
aligning partially with aforementioned and other findings (see Marshall
et al., 2002). This may raise alarms of a general unquantified decline in
arthropod diversity in heavily manipulated agro-ecosystems of the
North-Western Himalaya, that may lead to/be resultant of substantial
alterations in overall functioning in contiguous habitats.

While both Gnaphosids and Lycosids were abundant in areas of
significant guild transitions from foliage to substratum dependency,
the overlap in their preferred habitats remains quite distinct. While
this can be primarily attributed to different hunting strategies, their
common grouping (as ground hunters) remains debated (Cardoso
et al.,, 2011; Cardoso et al., 2015; Héfer & Brescovit, 2001). Research
has also shown that “sit-and-wait” strategies work particularly well
towards capturing highly mobile prey, while pursuing spiders are more
adept at capturing sedentary prey (Kuusk & Ekbom, 2012; Sweeney
et al., 2013). As a result, variations in strategies may allow spiders
within communities to utilize similar types of prey, but in varying pro-
portions (Birkhofer & Wolters, 2012; Michalko et al., 2019; Michalko &
Pekar, 2016). A similar debate over the trade-off of guild clustering
and actual resource-microhabitat utilization exists over generalization
of various web-building categories, especially sheet builders (Cardoso
et al., 2015).

Marked shifts in guild composition of FR communities supports a

higher abundance of ground dwellers in drier ecosystems of E3500

e | i

(Chatzaki et al., 2005). However, for other LUs, this shift was less pro-
nounced. Contrary to our expected results, despite similar habitats in
E4000 and E4500, the former supported high abundance of space
web-builders. While limited studies have attempted to explore this
theory within alpine habitats, findings of Wirta et al. (2015) supports
the occurrence of opportunistic web-builders from similar habitats in
high-arctic ecosystems, a finding common across all LUs except AG
fields.

Overall, the use of guild offers several advantages in understand-
ing FD shifts, trophic relationships and competition or coexistence
among similar species. However, as pointed out by one of the pio-
neers of the contemporary guild classification (Cardoso et al., 2011),
using “taxonomic family” as a surrogate for guilds may have some
exceptions. A similar limitation applies to the circadian activity trait,
which is also commonly assigned at the taxonomic family level, based
on literature. While this provides a functional approximation, species-
level variations in activity patterns may exist, highlighting the need for
finer-resolution behavioural assessments to improve accuracy. These
could become more prevalent as we gain further knowledge about
the individual species’ ecology. While we agree more comprehensive
and quantitative traits are needed to support our findings, which cur-
rently remain speculative at best, we believe that the results can serve
as early warning systems for functional losses in Himalayan communi-
ties driven by drastic and uncontrolled changes in connective
ecosystems.

Overall, the study highlights predominantly significant patterns in
spider FD across land-use types and elevational gradients, without
attempting to disentangle the independent effects of site and dis-
tance. In addition to understanding how functional properties vary
across different LUs, it provides evidence of consistent and significant
deviations from natural patterns in agricultural communities. This
remains indicative of potential disruptions in community and func-
tional attributes that caution managerial interventions. We identify
transitions between 3000 and 3500 m as key zones where shifts in
FD suggest potential changes in trait distributions. While our findings
indicate variation in functional attributes, further research incorporat-
ing species-specific adaptive traits is needed to explicitly assess niche
partitioning and conservation priorities in these regions. The study
also confirms broad feeding and dispersal capabilities of spiders, simi-
larly influenced by elevational-LU idiosyncrasies. The findings also
corroborate the association of hunting strategies and guild variations
with vegetation strata. In conclusion, findings from the study empha-
size the need to further investigate functional dynamics in other
ground arthropod assemblages to better understand ecological
impacts of LU-mediated changes and environmental disturbances in
mountain ecosystems—a field of research that hitherto remains
scarcely documented. It also serves as an early warning system for
potential functional losses in Himalayan spider communities due to
drastic environmental changes in connected ecosystems. These
insights can better inform conservation strategies aimed at preserving
the functional integrity of Himalayan spider and overall ecological

communities amidst ongoing environmental challenges.
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STUDY LIMITATIONS

This study offers key insights into how FD patterns vary across eleva-
tion and land-use gradients in Himalayan spider assemblages, but sev-
eral limitations merit acknowledgment.

First, our analysis focused on FD metrics without incorporating
taxonomic turnover. While FD captures trait-level community varia-
tion, parallel evaluation of species turnover would help determine
whether functional shifts are driven by species replacement or intra-
specific trait variation. Although a separate taxonomic analysis has
been submitted elsewhere, integrating both dimensions would yield a
more holistic view of community restructuring along environmental
gradients.

Second, while our design targeted FD variation across elevation
and land use, the inclusion of two distinct regions, Kullu and Lahaul-
Spiti, introduces biogeographic heterogeneity. These districts differ in
climate, vegetation and evolutionary history, which may influence trait
distributions. Although comparable land-use types were sampled
within each district to minimize confounding, residual biogeographic
variation cannot be entirely excluded. We addressed this by incorpo-
rating site identity (defined by elevation band and land-use type) and
sampling month as random effects in a generalized linear mixed-
effects framework, thereby accounting for hierarchical spatial struc-
ture and uneven seasonal sampling. Future studies could further
refine this approach by integrating explicit spatial distance measures
or spatially explicit models to disentangle the relative roles of dis-
persal limitation and spatial autocorrelation in shaping functional
patterns.

Third, due to logistical constraints, we used relatively small
(I m x 1 m) quadrats across 525 sampling units. While effective in
previous studies, larger sampling areas may have better captured habi-
tat heterogeneity and rare species.

Trait assignments, especially for circadian activity and feeding
guilds, were derived from literature rather than direct field observa-
tions. Activity patterns were assigned at the family level, despite
potential species-level variation. While feeding guilds offer a useful
ecological lens, they may overlook behavioral plasticity. Overall, FD
metrics provide an estimate of functional composition but are not
direct indicators of ecological function. Future studies with finer-
resolution trait data and direct behavioral observations could improve
trait-function inference.

Seasonal variation is another consideration. Although sampling
occurred between March and September 2021, not all sites were vis-
ited each month. As spider abundance and traits may shift seasonally,
year-round sampling would yield more temporally robust patterns.

Lastly, while we interpret elevation as a proxy for forest-type
transitions, an approach supported by prior literature, we acknowl-
edge that vegetation composition and resource availability were not
directly measured. Controlled studies incorporating habitat variables
and experimental validation would strengthen causal interpretations
of environmental filtering or competition.

Despite these constraints, this study establishes a foundational

understanding of how elevation and land use shape spider FD in the

Royal
Entomological
Society

SARKAR ET AL.

Himalayas. Future work integrating species turnover, finer trait data and

expanded spatial-temporal sampling will build upon these insights.
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